ﻻ يوجد ملخص باللغة العربية
The general framework on the non-local Markovian symmetric forms on weighted $l^p$ $(p in [1, infty])$ spaces constructed by [A,Kagawa,Yahagi,Y 2020], by restricting the situation where $p =2$, is applied to such measure spaces as the space cut-off $P(phi)_2$ Euclidean quantum field, the $2$-dimensional Euclidean quantum fields with exponential and trigonometric potentials, and the field describing a system of an infinite number of classical particles. For each measure space, the Markov process corresponding to the {it{non-local}} type stochastic quantization is constructed.
General theorems on the closability and quasi-regularity of non-local Markovian symmetric forms on probability spaces $(S, {cal B}(S), mu)$, with $S$ Fr{e}chet spaces such that $S subset {mathbb R}^{mathbb N}$, ${cal B}(S)$ is the Borel $sigma$-field
In this paper a general definition of quantum conditional entropy for infinite-dimensional systems is given based on recent work of Holevo and Shirokov arXiv:1004.2495 devoted to quantum mutual and coherent informations in the infinite-dimensional ca
The thermal equilibrium distribution over quantum-mechanical wave functions is a so-called Gaussian adjusted projected (GAP) measure, $GAP(rho_beta)$, for a thermal density operator $rho_beta$ at inverse temperature $beta$. More generally, $GAP(rho)$
The coding theorem for the entanglement-assisted communication via infinite-dimensional quantum channel with linear constraint is extended to a natural degree of generality. Relations between the entanglement-assisted classical capacity and the $chi$
We give a stochastic proof of the finite approximability of a class of Schru007fodinger operators over a local field, thereby completing a program of establishing in a non-Archimedean setting corresponding results and methods from the Archimedean (re