ترغب بنشر مسار تعليمي؟ اضغط هنا

An Appraisal Transition System for Event-driven Emotions in Agent-based Player Experience Testing

107   0   0.0 ( 0 )
 نشر من قبل Saba Gholizadeh Ansari
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Player experience (PX) evaluation has become a field of interest in the game industry. Several manual PX techniques have been introduced to assist developers to understand and evaluate the experience of players in computer games. However, automated testing of player experience still needs to be addressed. An automated player experience testing framework would allow designers to evaluate the PX requirements in the early development stages without the necessity of participating human players. In this paper, we propose an automated player experience testing approach by suggesting a formal model of event-based emotions. In particular, we discuss an event-based transition system to formalize relevant emotions using Ortony, Clore, & Collins (OCC) theory of emotions. A working prototype of the model is integrated on top of Aplib, a tactical agent programming library, to create intelligent PX test agents, capable of appraising emotions in a 3D game case study. The results are graphically shown e.g. as heat maps. Emotion visualization of the test agent would ultimately help game designers in creating content that evokes a certain experience in players.



قيم البحث

اقرأ أيضاً

Logs have been an imperative resource to ensure the reliability and continuity of many software systems, especially large-scale distributed systems. They faithfully record runtime information to facilitate system troubleshooting and behavior understa nding. Due to the large scale and complexity of modern software systems, the volume of logs has reached an unprecedented level. Consequently, for log-based anomaly detection, conventional methods of manual inspection or even traditional machine learning-based methods become impractical, which serve as a catalyst for the rapid development of deep learning-based solutions. However, there is currently a lack of rigorous comparison among the representative log-based anomaly detectors which resort to neural network models. Moreover, the re-implementation process demands non-trivial efforts and bias can be easily introduced. To better understand the characteristics of different anomaly detectors, in this paper, we provide a comprehensive review and evaluation on five popular models used by six state-of-the-art methods. Particularly, four of the selected methods are unsupervised and the remaining two are supervised. These methods are evaluated with two publicly-available log datasets, which contain nearly 16 millions log messages and 0.4 million anomaly instances in total. We believe our work can serve as a basis in this field and contribute to the future academic researches and industrial applications.
Use case scenarios are created during the analysis phase to specify software system requirements and can also be used for creating system level test cases. Using use cases to get system tests has several benefits including test design at early stages of software development life cycle that reduces over all development cost of the system. Current approaches for system testing using use cases involve functional details and does not include guards as passing criteria i.e. use of class diagram that seem to be difficult at very initial level which lead the need of specification based testing without involving functional details. In this paper, we proposed a technique for system testing directly derived from the specification without involving functional details. We utilize initial and post conditions applied as guards at each level of the use cases that enables us generation of formalized test cases and makes it possible to generate test cases for each flow of the system. We used use case scenarios to generate system level test cases, whereas system sequence diagram is being used to bridge the gap between the test objective and test cases, derived from the specification of the system. Since, a state chart derived from the combination of sequence diagrams can model the entire behavior of the system.Generated test cases can be employed and executed to state chart in order to capture behavior of the system with the state change.All these steps enable us to systematically refine the specification to achieve the goals of system testing at early development stages.
The emergence of new technologies in software testing has increased the automation and flexibility of the testing process. In this context, the adoption of agents in software testing remains an active research area in which various agent methodologie s, architectures, and tools are employed to improve different test problems. Even though research that investigates agents in software testing has been growing, these agent-based techniques should be considered in a broader perspective. In order to provide a comprehensive overview of this research area, which we define as agent-based software testing (ABST), a systematic mapping study has been conducted. This mapping study aims to identify the topics studied within ABST, as well as examine the adopted research methodologies, identify the gaps in the current research and point to directions for future ABST research. Our results suggest that there is an interest in ABST after 1999 that resulted in the development of solutions using reactive, BDI, deliberative and cooperate agent architectures for software testing. In addition, most of the ABST approaches are designed using the JADE framework, have targeted the Java programming language, and are used at system-level testing for functional, non-functional and white-box testing. In regards to regression testing, our results indicate a research gap that could be addressed in future studies.
115 - Yamine Ait Ameur 2018
This paper reports on the results of the French ANR IMPEX research project dealing with making explicit domain knowledge in design models. Ontologies are formalised as theories with sets, axioms, theorems and reasoning rules. They are integrated to d esign models through an annotation mechanism. Event-B has been chosen as the ground formal modelling technique for all our developments. In this paper, we particularly describe how ontologies are formalised as Event-B theories.
Machine learning techniques are becoming a fundamental tool for scientific and engineering progress. These techniques are applied in contexts as diverse as astronomy and spam filtering. However, correctly applying these techniques requires careful en gineering. Much attention has been paid to the technical potential; relatively little attention has been paid to the software engineering process required to bring research-based machine learning techniques into practical utility. Technology companies have supported the engineering community through machine learning frameworks such as TensorFLow and PyTorch, but the details of how to engineer complex machine learning models in these frameworks have remained hidden. To promote best practices within the engineering community, academic institutions and Google have partnered to launch a Special Interest Group on Machine Learning Models (SIGMODELS) whose goal is to develop exemplary implementations of prominent machine learning models in community locations such as the TensorFlow Model Garden (TFMG). The purpose of this report is to define a process for reproducing a state-of-the-art machine learning model at a level of quality suitable for inclusion in the TFMG. We define the engineering process and elaborate on each step, from paper analysis to model release. We report on our experiences implementing the YOLO model family with a team of 26 student researchers, share the tools we developed, and describe the lessons we learned along the way.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا