ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA and NOEMA constraints on synchrotron nebular emission from embryonic superluminous supernova remnants and radio-gamma-ray connection

63   0   0.0 ( 0 )
 نشر من قبل Kohta Murase
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fast-rotating pulsars and magnetars have been suggested as the central engines of super-luminous supernovae (SLSNe) and fast radio bursts, and this scenario naturally predicts non-thermal synchrotron emission from their nascent pulsar wind nebulae (PWNe). We report results of high-frequency radio observations with ALMA and NOEMA for three SLSNe (SN 2015bn, SN 2016ard, and SN 2017egm), and present a detailed theoretical model to calculate non-thermal emission from PWNe with an age of about 1-3 yr. We find that the ALMA data disfavors a PWN model motivated by the Crab nebula for SN 2015bn and SN 2017egm, and argue that this tension can be resolved if the nebular magnetization is very high or very low. Such models can be tested by future MeV-GeV gamma-ray telescopes such as AMEGO.



قيم البحث

اقرأ أيضاً

It has been widely argued that Type-I super-luminous supernovae (SLSNe-I) are driven by powerful central engines with a long-lasting energy injection after the core-collapse of massive progenitors. One of the popular hypotheses is that the hidden eng ines are fast-rotating pulsars with a magnetic field of $Bsim{10}^{13}-{10}^{15}$ G. Murase, Kashiyama & Meszaros (2016) showed that quasi-steady radio/submm emission from non-thermal electron-positron pairs in nascent pulsar wind nebulae can be used as a counterpart of such pulsar-driven supernovae (SNe). In this work, focusing on the nascent SLSN-I remnants, we examine constraints that can be placed by radio emission. We show that the Atacama Large Millimeter/submillimetre Array (ALMA) can detect the radio nebula from SNe at $D_{rm L} sim 1 rm Gpc$ in a few years after the explosion, while the Jansky Very Large Array (VLA) can also detect the counterpart in a few decades. The proposed radio followup observation could solve the parameter degeneracy in the pulsar-driven SN model for optical/UV light curves, and could also give us clues to young neutron star scenarios for SLSNe-I and fast radio bursts.
Blazars are a sub-category of radio-loud active galactic nuclei with relativistic jets pointing towards to the observer. They are well-known for their non-thermal variable emission, which practically extends over the whole electromagnetic spectrum. D espite the plethora of multi-wavelength observations, the issue about the origin of the $gamma$-ray and radio emission in blazar jets remains unsettled. Here, we construct a parametric leptonic model for studying the connection between the $gamma$-ray and radio emission in both steady-state and flaring states of blazars. Assuming that relativistic electrons are injected continuously at a fixed distance from the black hole, we numerically study the evolution of their population as it propagates to larger distances while losing energy due to expansion and radiative cooling. In this framework, $gamma$-ray photons are naturally produced at small distances (e.g. $10^{-3}$ pc) when the electrons are still very energetic, whereas the radio emission is produced at larger distances (e.g. $1$ pc), after the electrons have cooled and the emitting region has become optically thin to synchrotron self-absorption due to expansion. We present preliminary results of our numerical investigation for the steady-state jet emission and the predicted time lags between $gamma$-rays and radio during flares.
Observations from the radio to the gamma-ray wavelengths indicate that supernova remnant (SNR) shocks are sites of effective particle acceleration. It has been proposed that the presence of dense clumps in the environment where supernovae explode mig ht have a strong impact in shaping the hadronic gamma-ray spectrum. Here we present a detailed numerical study about the penetration of relativistic protons into clumps which are engulfed by a SNR shock, taking into account the magneto-hydrodynamical properties of the background plasma. We show that the spectrum of protons inside clumps is much harder than that in the diffuse inter-clump medium and we discuss the implications for the formation of the spectrum of hadronic gamma rays, which does not reflect anymore the acceleration spectrum of protons, resulting substantially modified inside the clumps due to propagation effects. For the Galactic SNR RX J1713.7-3946, we show that a hadronic scenario including dense clumps inside the remnant shell is able to reproduce the broadband gamma-ray spectrum from GeV to TeV energies. Moreover, we argue that small clumps crossed by the shock could provide a natural explanation to the non-thermal X-ray variability observed in some hot spots of RX J1713.7-3946. Finally we discuss the detectability of gamma-ray emission from clumps with the upcoming Cherenkov Telescope Array and the possible detection of the clumps themselves through molecular lines.
We present analytical and numerical studies of models of supernova-remnant (SNR) blast waves expanding into uniform media and interacting with a denser cavity wall, in one spatial dimension. We predict the nonthermal emission from such blast waves: s ynchrotron emission at radio and X-ray energies, and bremsstrahlung, inverse-Compton emission (from cosmic-microwave-background seed photons, ICCMB), and emission from the decay of $pi^0$ mesons produced in inelastic collisions between accelerated ions and thermal gas, at GeV and TeV energies. Accelerated particle spectra are assumed to be power-laws with exponential cutoffs at energies limited by the remnant age or (for electrons, if lower) by radiative losses. We compare the results with those from homogeneous (one-zone) models. Such models give fair representations of the 1-D results for uniform media, but cavity-wall interactions produce effects for which one-zone models are inadequate. We study the time evolution of SNR morphology and emission with time. Strong morphological differences exist between ICCMB and $pi^0$-decay emission, at some stages, the TeV emission can be dominated by the former and the GeV by the latter, resulting in strong energy-dependence of morphology. Integrated gamma-ray spectra show apparent power-laws of slopes that vary with time, but do not indicate the energy distribution of a single population of particles. As observational capabilities at GeV and TeV energies improve, spatial inhomogeneity in SNRs will need to be accounted for.
The Fermi-LAT revealed that the census of the gamma-ray sky is dominated by blazars. Looking for a possible connection between radio and gamma-ray emission is a central issue for understanding the blazar physics, and various works were dedicated to t his topic. However, while a strong and significant correlation was found between radio and gamma-ray emission in the 0.1-100 GeV energy range, the connection between radio and very high energy (VHE, E>0.1 TeV) emission is still elusive. The main reason is the lack of a homogeneous VHE sky coverage, due to the operational mode of the imaging atmospheric Cherenkov telescopes. With the present work we aim to quantify and assess the significance of the possible connection between high-resolution radio emission, on milliarcsecond scale, and GeV-TeV gamma-ray emission in blazars. For achieving our goal we extract two large and unbiased blazar samples from the 1FHL and 2FHL Fermi catalogs, above 10 GeV and 50 GeV, respectively. To investigate how the correlation evolves as the gamma-ray energy increases, we perform the same analysis by using the 0.1-300 GeV 3FGL gamma-ray energy fluxes. When we consider the 0.1-300 GeV gamma-ray energy range, we find a strong and significant correlation for all of the blazar sub-classes. Conversely, when we consider the gamma-ray emission above 10 GeV the correlation with the radio emission vanishes, with the exception of the blazar sub-class of high synchrotron peaked objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا