ﻻ يوجد ملخص باللغة العربية
Traditional link adaptation (LA) schemes in cellular network must be revised for networks beyond the fifth generation (b5G), to guarantee the strict latency and reliability requirements advocated by ultra reliable low latency communications (URLLC). In particular, a poor error rate prediction potentially increases retransmissions, which in turn increase latency and reduce reliability. In this paper, we present an interference prediction method to enhance LA for URLLC. To develop our prediction method, we propose a kernel based probability density estimation algorithm, and provide an in depth analysis of its statistical performance. We also provide a low complxity version, suitable for practical scenarios. The proposed scheme is compared with state-of-the-art LA solutions over fully compliant 3rd generation partnership project (3GPP) calibrated channels, showing the validity of our proposal.
In this letter, we analyze the achievable rate of ultra-reliable low-latency communications (URLLC) in a randomly modeled wireless network. We use two mathematical tools to properly characterize the considered system: i) stochastic geometry to model
With the phenomenal growth of the Internet of Things (IoT), Ultra Reliable Low Latency Communications (URLLC) has potentially been the enabler to guarantee the stringent requirements on latency and reliability. However, how to achieve low latency and
Effective Capacity defines the maximum communication rate subject to a specific delay constraint, while effective energy efficiency (EEE) indicates the ratio between effective capacity and power consumption. We analyze the EEE of ultra-reliable netwo
To overcome devices limitations in performing computation-intense applications, mobile edge computing (MEC) enables users to offload tasks to proximal MEC servers for faster task computation. However, current MEC system design is based on average-bas
Considering a Manhattan mobility model in vehicle-to-vehicle networks, this work studies a power minimization problem subject to second-order statistical constraints on latency and reliability, captured by a network-wide maximal data queue length. We