ﻻ يوجد ملخص باللغة العربية
High temperature superconducting materials have been known since the pioneering work of Bednorz and Mueller in 1986. While the microscopic mechanism responsible for high Tc superconductivity is still debated, most materials showing high Tc contain highly electronic polarizable ions, suggesting that the mechanism driving high Tc superconductivity can be related to the ion electronic polarizability in high Tc materials. Here we show that a free charge carrier polarizes the ions surrounding it and the total electrical potential generated by the charge carrier itself and the polarized ions becomes attractive in some regions of space. Our results on bulk FeSe, monolayer FeSe on SrTiO3 and La2CuO4 are in excellent agreement with the experiments. The fact that the electronic polarizability explains correctly and quantitatively the superconductivity parameters: Tc, gap and paring energies of both pnictides and cuprates with similar polarizability parameters, suggests that the same model may be applicable to other material systems within these groups as well as other high Tc groups.
We show that Cooper pairing can occur intrinsically away from the Fermi surface in $j=3/2$ superconductors with strong spin-orbit coupling and equally curved bands in the normal state. In contrast to conventional pairing between spin-$1/2$ electrons,
In most superconductors the transition to the superconducting state is driven by the binding of electrons into Cooper-pairs. The condensation of these pairs into a single, phase coherent, quantum state takes place concomitantly with their formation a
The in-plane optical conductivity of Bi2Sr2CaCu2O8+d thin films with small carrier density (underdoped) up to large carrier density (overdoped) is analyzed with unprecedented accuracy. Integrating the conductivity up to increasingly higher energies p
In this review article, we show our recent results relating to the undoped (Ce-free) superconductivity in the electron-doped high-Tc cuprates with the so-called T structure. For an introduction, we briefly mention the characteristics of the electron-
The key ingredients in any superconductor are the Cooper pairs, in which two electrons combine to form a composite boson. In all conventional superconductors the pairing strength alone sets the majority of the physical properties including the superc