Layered ternary transition-metal chalcogenides have been focused as a vein of exploration for superconductors. In this study, TiGeTe$_{6}$ single crystals were synthesized and characterized by structural and valence state analyses and electrical transport measurements. The transport properties were measured under various pressures up to 71 GPa. The activation energy gets smaller as the applied pressure increases, and a signature of a pressure-induced metallization was observed under around 8.4 GPa. Under 13 GPa, pressure-induced superconductivity was discovered in this compound for the first time, with successive drops at 3 K and 6 K in the resistance, indicating the presence of multiple superconducting transitions. The superconducting transition temperature kept increasing as we further applied the pressure to the TiGeTe$_{6}$ single crystal in the performed pressure range, reaching as high as 8.1 K under 71 GPa.