ﻻ يوجد ملخص باللغة العربية
Layered ternary transition-metal chalcogenides have been focused as a vein of exploration for superconductors. In this study, TiGeTe$_{6}$ single crystals were synthesized and characterized by structural and valence state analyses and electrical transport measurements. The transport properties were measured under various pressures up to 71 GPa. The activation energy gets smaller as the applied pressure increases, and a signature of a pressure-induced metallization was observed under around 8.4 GPa. Under 13 GPa, pressure-induced superconductivity was discovered in this compound for the first time, with successive drops at 3 K and 6 K in the resistance, indicating the presence of multiple superconducting transitions. The superconducting transition temperature kept increasing as we further applied the pressure to the TiGeTe$_{6}$ single crystal in the performed pressure range, reaching as high as 8.1 K under 71 GPa.
High-pressure electrical resistance measurements have been performed on single crystal Ba0.5Sr0.5Fe2As2 platelets to pressures of 16 GPa and temperatures down to 10 K using designer diamond anvils under quasi-hydrostatic conditions with an insulating
The rich phenomena in the FeSe and related compounds have attracted great interests as it provides fertile material to gain further insight into the mechanism of high temperature superconductivity. A natural follow-up work was to look into the possib
Bi2Te3 compound has been theoretically predicted (1) to be a topological insulator, and its topologically non-trivial surface state with a single Dirac cone has been observed in photoemission experiments (2). Here we report that superconductivity (Tc
The pressure dependences of resistivity and ac susceptibility have been measured in the mineral calaverite AuTe$_2$. Resistivity clearly shows a first-order phase transition into a high-pressure phase, consistent with the results of a previous struct
Topological superconductivity with Majorana bound states, which are critical to implement nonabelian quantum computation, may be realized in three-dimensional semimetals with nontrivial topological feature, when superconducting transition occurs in t