ﻻ يوجد ملخص باللغة العربية
Asteroseismic measurements enable inferences of the underlying stellar structure, such as the density and the speed of sound at various points within the interior of the star. This provides an opportunity to test stellar evolution theory by assessing whether the predicted structure of a star agrees with the measured structure. Thus far, this kind of inverse analysis has only been applied to the Sun and three solar-like main-sequence stars. Here we extend the technique to stars on the subgiant branch, and apply it to one of the best-characterized subgiants of the Kepler mission, HR 7322. The observation of mixed oscillation modes in this star facilitates inferences of the conditions of its inert helium core, nuclear-burning hydrogen shell, and the deeper parts of its radiative envelope. We find that despite significant differences in the mode frequencies, the structure near to the center of this star does not differ significantly from the predicted structure.
With the observations of an unprecedented number of oscillating subgiant stars expected from NASAs TESS mission, the asteroseismic characterization of subgiant stars will be a vital task for stellar population studies and for testing our theories of
Models of solar-like oscillators yield acoustic modes at different frequencies than would be seen in actual stars possessing identical interior structure, due to modelling error near the surface. This asteroseismic surface term must be corrected when
Context. Asteroseismology is an effcient tool not only for testing stellar structure and evolutionary theory but also constraining the parameters of stars for which solar-like oscillations are detected, presently. As an important southern asteroseism
Regions of rapid variation in the internal structure of a star are often referred to as acoustic glitches since they create a characteristic periodic signature in the frequencies of p modes. Here we examine the localized disturbance arising from the
We present Kepler observations of the bright (V=8.3), oscillating star HD 179070. The observations show transit-like events which reveal that the star is orbited every 2.8 days by a small, 1.6 R_Earth object. Seismic studies of HD 179070 using short