ترغب بنشر مسار تعليمي؟ اضغط هنا

High-order Van Hove singularities in cuprates and related high-Tc superconductors

91   0   0.0 ( 0 )
 نشر من قبل Robert Markiewicz
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional (2D) Van Hove singularities (VHSs) associated with the saddle points or extrema of the energy dispersion usually show logarithmic divergences in the density of states (DOS). However, recent studies find that the VHSs originating from higher-order saddle-points have faster-than-logarithmic divergences, which can amplify electron correlation effects and create exotic states such as supermetals in 2D materials. Here we report the existence of high-order VHSs in the cuprates and related high-Tc superconductors and show that the anomalous divergences in their spectra are driven by the electronic dimensionality of the system being lower than the dimensionality of the lattice. The order of VHS is found to correlate with the superconducting Tc such that materials with higher order VHSs display higher Tcs. We further show that the presence of the normal and higher-order VHSs in the electronic spectrum can provide a straightforward marker for identifying the propensity of a material toward correlated phases such as excitonic insulators or supermetals. Our study opens up a new materials playground for exploring the interplay between high-order VHSs, superconducting transition temperatures and electron correlation effects in the cuprates and related high-Tc superconductors.



قيم البحث

اقرأ أيضاً

One of interesting open questions for the high transition temperature (Tc) superconductivity in sulfur hydrides is why high pressure phases of H3S have extremely high Tcs. Recently, it has been pointed out that the presence of the van Hove singularit ies (vHs) around the Fermi level is crucial. However, while there have been quantitative estimates of Tc based on the Migdal-Eliashberg theory, the energy dependence of the density of states (DOS) has been neglected to simplify the Eliashberg equation. In this study, we go beyond the constant DOS approximation and explicitly consider the electronic structure over 40eV around the Fermi level. In contrast with the previous conventional calculations, this approach with a sufficiently large number of Matsubara frequencies enables us to calculate Tc without introducing the empirical pseudo Coulomb potential. We show that while H3S has much higher Tc than H2S for which the vHs is absent, the constant DOS approximation employed so far seriously overestimates (underestimates) Tc by ~ 60K (~ 10K) for H3S (H2S). We then discuss the impact of the strong electron-phonon coupling on the electronic structure with and without the vHs and how it affects the superconductivity. Especially, we focus on (1) the feedback effect in the self-consistent calculation of the self-energy, (2) the effect of the energy shift due to the zero-point motion, and (3) the effect of the changes in the phonon frequencies due to strong anharmonicity. We show that the effect of (1)-(3) on Tc is about 10-30K for both H3S and H2S. Eventually, Tc is estimated to be 181K for H3S at 250GPa and 34K for H2S at 140GPa, which explains the pressure dependence of Tc observed in the experiment. In addition, we evaluate the lowest order vertex correction beyond the Migdal-Eliashberg theory and discuss the validity of the Migdal approximation for sulfur hydrides.
Van Hove points are special points in the energy dispersion, where the density of states exhibits analytic singularities. When a Van Hove point is close to the Fermi level, tendencies towards density wave orders, Pomeranchuk orders, and superconducti vity can all be enhanced, often in more than one channel, leading to a competition between different orders and unconventional ground states. Here we consider the effects from higher-order Van Hove points, around which the dispersion is flatter than near a conventional Van Hove point, and the density of states has a power-law divergence. We argue that such points are present in intercalated graphene and other materials. We use an effective low-energy model for electrons near higher-order Van Hove points and analyze the competition between different ordering tendencies using an unbiased renormalization group approach. For purely repulsive interactions, we find that two key competitors are ferromagnetism and chiral superconductivity. For a small attractive exchange interaction, we find a new type of spin Pomeranchuk order, in which the spin order parameter winds around the Fermi surface. The supermetal state, predicted for a single higher-order Van Hove point, is an unstable fixed point in our case.
We revisit the problem of the spectra of two holes in a CuO$_{2}$ layer, modeled as a Cu-d$^{8}$ impurity with full multiplet structure coupled to a full O-2p band as an approximation to the local electronic structure of a hole doped cuprate. Unlike previous studies that treated the O band as a featureless bath, we describe it with a realistic tight binding model. While our results are in qualitative agreement with previous work, we find considerable quantitative changes when using the proper O-2p band structure. We also find (i) that only the ligand O-2p orbitals play an essential role, within this impurity model; (ii) that the three-orbital Emery model provides an accurate description for the subspace with $^{1}!A_1$ symmetry, which includes the ground-state in the relevant region of the phase diagram; (iii) that this ground-state has only $sim 50%$ overlap with a Zhang-Rice singlet; (iv) that there are other low-energy states, in subspaces with different symmetries, that are absent from the three-orbital Emery model and its one-band descendants. These states play an important role in describing the elementary excitations of doped cuprates.
Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy waterfall or high energy anomaly (HEA). This paper d emonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the by-product of matrix element effects, but rather represents a cross-over from a quasiparticle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the waterfall-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.
We demonstrate that the strong anomalies in the high frequency LO-phonon spectrum in cuprate superconductors can in principle be explained by the enhanced electronic polarizability associated with the self-organized one dimensionality of metallic str ipes. Contrary to the current interpretation in terms of transversal stripe fluctuations, the anomaly should occur at momenta parallel to the stripes. The doping dependence of the anomaly is naturally explained, and we predict that the phonon line-width and the spread of the anomaly in the transverse momentum decrease with increasing temperature while high resolution measurements should reveal a characteristic substructure to the anomaly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا