ﻻ يوجد ملخص باللغة العربية
Following a previous proposal, lepton number is considered as the result of a spontaneously broken non-Abelian gauge $SU(2)_N$ symmetry. New fermions are added to support this new symmetry, the spontaneous breaking of which allows these new fermions to be part of the dark sector, together with the vector gauge boson which communicates between them and the usual leptons. A byproduct is a potential significant contribution to the muon anomalous magnetic moment.
We suggest that dark matter may be partially constituted by a dilute t Hooft-Polyakov monopoles gas. We reach this conclusion by using the Georgi-Glashow model coupled to a dual kinetic mixing term $ F{tilde {cal G}}$ where $F$ is the electromagnetic
We propose a new class of dark matter models with unusual phenomenology. What is ordinary about our models is that dark matter particles are WIMPs, they are weakly coupled to the Standard Model and have weak scale masses. What is unusual is that they
We investigate a gauge theory realization of non-Abelian discrete flavor symmetries and apply the gauge enhancement mechanism in heterotic orbifold models to field-theoretical model building. Several phenomenologically interesting non-Abelian discret
Motivated by the recently reported excess of electron recoil events by the XENON1T experiment, we propose low scale seesaw scenarios for light neutrino masses within $U(1)_X$ gauge extension of the standard model that also predicts stable as well as
We present a non-supersymmetric scenario in which the R-parity symmetry $R_P = (-1)^{3(B-L)+2s}$ arises as a result of spontaneous gauge symmetry breaking, leading to a viable Dirac fermion WIMP dark matter candidate. Direct detection in nuclear reco