ﻻ يوجد ملخص باللغة العربية
The extremely neutron-rich system $^{6}$H was studied in the direct $^2text{H}(^8text{He},{^4text{He}})^{6}$H transfer reaction with a 26 $A$ MeV secondary $^{8}$He beam. The measured missing mass spectrum shows a broad bump at $sim 4-8$ MeV energy relative to the $^3$H+$3n$ decay threshold. This bump can be interpreted as a broad resonant state in $^{6}$H at $6.8(5)$ MeV. The population cross section of such a presumably $p$-wave state (or may be few overlapping states) in the energy range from 4 to 8 MeV is $dsigma/dOmega_{text{c.m.}} simeq 190(40)$ $mu$b/sr in the angular range $5^{circ}<theta_{text{c.m.}}<16^{circ}$. The obtained missing mass spectrum is practically free of the $^{6}$H events below 3.5 MeV ($dsigma/dOmega_{text{c.m.}} lesssim 5$ $mu$b/sr in the same angular range). The steep rise of the $^{6}$H missing mass spectrum at $sim 3$ MeV allows to derive the lower limit for the possible resonant state energy in $^{6}$H of $4.5(3)$ MeV. According to the paring energy estimates, such a $4.5(3)$ MeV resonance is a realistic candidate for the $^{6}$H ground state (g.s.). The obtained results confirm that the decay mechanism of the $^{7}$H g.s. (located at 2.2 MeV above the $^{3}$H+$4n$ threshold) is the true (or simultaneous) $4n$ emission. The resonance energy profiles and the momentum distributions of fragments of the sequential $^{6}$H$ ,rightarrow , ^5$H(g.s.)+$n, rightarrow , ^3$H+$3n$ decay were analyzed by the theoretically-updated direct four-body-decay and sequential-emission mechanisms. The measured momentum distributions of the $^{3}$H fragments in the $^{6}$H rest frame indicate very strong dineutron-type correlations in the $^{5}$H ground state decay.
Evidence for the neutron-rich hypernucleus 6{Lambda}H is presented from the FINUDA experiment at DA{Phi}NE, Frascati, studying ({pi}+, {pi}-) pairs in coincidence from the K- +6Li rightarrow 6 H+{pi}+ production reaction followed by 6{Lambda}H righta
The extremely neutron-rich system $^{7}$H was studied in the direct $^2$H($^8$He,$^3$He)$^7$H transfer reaction with a 26 AMeV secondary $^{8}$He beam [Bezbakh et al., Phys. Rev. Lett. 124 (2020) 022502]. The missing mass spectrum and center-of-mass
Measurements of the t-t and p-t coincidence events in the $^3$H ($alpha$, ttp) reaction have been obtained at $E_alpha$ incident energy of 67.2 MeV. Various appropriate angular configurations of detectors were chosen in order to observe the populatio
Two new low-lying $^6$He levels at excitation energies of about 2.4 and 2.9 MeV were observed in the experimental investigation of the p-$alpha$ coincidence spectra obtained by the $^3$H($^4$He,p$alpha$)2n four-body reaction at $E_{rm ,^4He}$ beam en
In a measurement of the 9Be(7Li,alpha 7Li)n alpha reaction at E = 52 MeV it is unambigously established for the first time that the 9Be excited states around 6.5 and 11.3 MeV decay into the alpha + 5He channel. This fact may support previous claims t