ﻻ يوجد ملخص باللغة العربية
We present a comprehensive impact study of future Electron-Ion Collider (EIC) data for parity-conserving and parity-violating polarization asymmetries on quark and gluon helicity distributions in the proton. The study, which is based on the JAM Monte Carlo global QCD analysis framework, explores the role of the extrapolation uncertainty and SU(3) flavor symmetry constraints in the simulated double-spin asymmetry, $A_{LL}$, at small parton momentum fractions $x$ and its effect on the extracted parton polarizations. We find that different assumptions about $A_{LL}$ extrapolations and SU(3) symmetry can have significant consequences for the integrated quark and gluon polarizations, for polarized proton, deuteron and $^3$He beams. For the parity-violating asymmetry, $A_{UL}$, we study the potential impact on the polarized strange quark distribution with different extrapolations of $A_{UL}$, finding the constraining power to be ultimately limited by the EIC machine luminosity.
Large angle gluon radiations induced by multiple parton scatterings contribute to dijet production in deeply inelastic scattering off a large nucleus at the Electron-Ion Collider. Within the generalized high-twist approach to multiple parton scatteri
An error in the calculation of the Coulomb coupling parameter of the quark-gluon plasma is corrected.
We use the meson cloud model to calculate $bar{d}(x) - bar{u}(x)$ and $ bar{d}(x)/bar{u}(x)$ in the proton. We show that a modification of the symmetric, perturbative part of the light quark sea provides better agreement with the ratio $ bar{d}(x)/bar{u}(x).
Penetrating probes in heavy-ion collisions, like jets and photons, are sensitive to the transport coefficients of the produced quark-gluon plasma, such as shear and bulk viscosity. Quantifying this sensitivity requires a detailed understanding of pho
In this paper we calculate analytically the perturbative matching coefficients for unpolarized quark and gluon Transverse-Momentum-Dependent (TMD) Parton Distribution Functions (PDFs) and Fragmentation Functions (FFs) through Next-to-Next-to-Next-to-