ﻻ يوجد ملخص باللغة العربية
For an integer $qge2$, a $q$-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of~$q$. In this article, $q$-recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every $q$-recursive sequence is $q$-regular in the sense of Allouche and Shallit and that a $q$-linear representation of the sequence can be computed easily by using the coefficients from the recurrence relations. Detailed asymptotic results for $q$-recursive sequences are then obtained based on a general result on the asymptotic analysis of $q$-regular sequences. Three particular sequences are studied in detail: We discuss the asymptotic behavior of the summatory functions of Sterns diatomic sequence, the number of non-zero elements in some generalized Pascals triangle and the number of unbordered factors in the Thue--Morse sequence. For the first two sequences, our analysis even leads to precise formulae{} without error terms.
We study two types of dynamical extensions of Lucas sequences and give elliptic solutions for them. The first type concerns a level-dependent (or discrete time-dependent) version involving commuting variables. We show that a nice solution for this sy
We introduce a notion of $q$-deformed rational numbers and $q$-deformed continued fractions. A $q$-deformed rational is encoded by a triangulation of a polygon and can be computed recursively. The recursive formula is analogous to the $q$-deformed Pa
Given a set of integers containing no 3-term arithmetic progressions, one constructs a Stanley sequence by choosing integers greedily without forming such a progression. Independent Stanley sequences are a well-structured class of Stanley sequences w
Let $G$ be a finite cyclic group of order $n ge 2$. Every sequence $S$ over $G$ can be written in the form $S=(n_1g)cdot ... cdot (n_lg)$ where $gin G$ and $n_1,..., n_l in [1,ord(g)]$, and the index $ind (S)$ of $S$ is defined as the minimum of $(n_
We establish a congruence on sums of central $q$-binomial coefficients. From this $q$-congruence, we derive the divisibility of the $q$-trinomial coefficients introduced by Andrews and Baxter.