ﻻ يوجد ملخص باللغة العربية
We have analyzed the ALMA archival data of the SO ($J_N=6_5-5_4$ and $J_N=7_6-6_5$), CO ($J=2-1$), and CCH ($N=3-2, J=7/2-5/2, F=4-3$) lines from the class 0 protobinary system, NGC1333 IRAS 4A. The images of SO ($J_N = 6_5-5_4$) and CO ($J=2-1$) successfully separate two northern outflow lobes connected to each protostar, IRAS 4A1 and IRAS 4A2. The outflow from IRAS 4A2 shows an S-shaped morphology, consisting of a flattened envelope around IRAS 4A2 with two outflow lobes connected to both edges of the envelope. The flattened envelope surrounding IRAS 4A2 has an opposite velocity gradient to that of the circumbinary envelope. The observed features are reproduced by the magnetohydrodynamic simulation of the collapsing core whose magnetic field direction is misaligned to the rotational axis. Our simulation shows that the intensity of the outflow lobes is enhanced on one side, resulting in the formation of S-shaped morphology. The S-shaped outflow can also be explained by the precessing outflow launched from an unresolved binary with a separation larger than 12 au (0.04arcsec). Additionally, we discovered a previously unknown extremely high velocity component at $sim$45-90 km/s near IRAS 4A2 with CO. CCH ($J_{N,F}=7/2_{3,4}-5/2_{2,3}$) emission shows two pairs of blobs attaching to the bottom of shell like feature, and the morphology is significantly different from those of SO and CO lines. Toward IRAS 4A2, the S-shaped outflow shown in SO is overlapped with the edges of CCH shells, while CCH shells have the velocity gradients opposite to the flattened structure around IRAS 4A2.
Atacama Large Millimetre/sub-millimetre Array (ALMA) observations of the CO(1-0) and CO(2-1) emissions from the circumstellar envelope of the Asymptotic Giant Branch (AGB) star EP Aqr have been made with four times better spatial resolution than prev
We present ALMA and VLA observations of the molecular and ionized gas at 0.1-0.3 arcsec resolution in the Class 0 protostellar system IRAS 16293-2422. These data clarify the origins of the protostellar outflows from the deeply embedded sources in thi
Context. The Class 0 protostellar binary IRAS 16293-2422 is an interesting target for (sub)millimeter observations due to, both, the rich chemistry toward the two main components of the binary and its complex morphology. Its proximity to Earth allows
Sub-arcsecond images of the rotational line emission of CS and SO have been obtained toward the Class I protostar IRAS 04365$+$2535 in TMC-1A with ALMA. A compact component around the protostar is clearly detected in the CS and SO emission. The veloc
We have analyzed rotational spectral line emission of OCS, CH3OH, HCOOCH3, and H2CS observed toward the low-mass Class 0 protostellar source IRAS 16293-2422 Source A at a sub-arcsecond resolution (~0.6 x 0.5) with ALMA. Significant chemical different