Bound-states-in-the-continuum (BIC)is a wave-mechanical concept that generates resonances with vanishing spectral linewidths. It has many practical applications in Optics, such as narrow-band filters, mirror-less lasing, and nonlinear harmonic generation. As true BIC optical modes non-radiative and confined to the near field of nanostructures, they cannot be excited using propagating light. As a result, their direct experimental observation has been elusive. Rather than using light, we demonstrate probing BIC modes on arrays of silicon nanoantennas using a focused beam of electrons in a tranmission electron microscope. By combining cathodoluminescence (CL) and monochromated electron energy-loss spectroscopy (EELS) with controlled nanofabrication, we provide direct experimental evidence of true BIC modes, and demonstrate a BIC mode in the visible spectrum at 720 nm. The ability to observe and quantify these guided resonances with a spatial precision more than two orders of magnitude higher than previous far-field measurements allows the probing of individual elements in the nano-antenna arrays. The high-resolution experimental results are supported by numerical simulations as well as multipolar decomposition analysis, allowing us to demonstrate that the coherent interaction length of the quasi-BIC resonance requires at least 6 neighboring antenna elements, achieving over 60 times higher emissivity than for unpatterned silicon.