ﻻ يوجد ملخص باللغة العربية
Dense retrieval (DR) has the potential to resolve the query understanding challenge in conversational search by matching in the learned embedding space. However, this adaptation is challenging due to DR models extra needs for supervision signals and the long-tail nature of conversational search. In this paper, we present a Conversational Dense Retrieval system, ConvDR, that learns contextualized embeddings for multi-turn conversational queries and retrieves documents solely using embedding dot products. In addition, we grant ConvDR few-shot ability using a teacher-student framework, where we employ an ad hoc dense retriever as the teacher, inherit its document encodings, and learn a student query encoder to mimic the teacher embeddings on oracle reformulated queries. Our experiments on TREC CAsT and OR-QuAC demonstrate ConvDRs effectiveness in both few-shot and fully-supervised settings. It outperforms previous systems that operate in the sparse word space, matches the retrieval accuracy of oracle query reformulations, and is also more efficient thanks to its simplicity. Our analyses reveal that the advantages of ConvDR come from its ability to capture informative context while ignoring the unrelated context in previous conversation rounds. This makes ConvDR more effective as conversations evolve while previous systems may get confused by the increased noise from previous turns. Our code is publicly available at https://github.com/thunlp/ConvDR.
Recent studies on Question Answering (QA) and Conversational QA (ConvQA) emphasize the role of retrieval: a system first retrieves evidence from a large collection and then extracts answers. This open-retrieval ConvQA setting typically assumes that e
Recent advances in dense retrieval techniques have offered the promise of being able not just to re-rank documents using contextualised language models such as BERT, but also to use such models to identify documents from the collection in the first p
Conversational passage retrieval relies on question rewriting to modify the original question so that it no longer depends on the conversation history. Several methods for question rewriting have recently been proposed, but they were compared under d
This paper describes the participation of UvA.ILPS group at the TREC CAsT 2020 track. Our passage retrieval pipeline consists of (i) an initial retrieval module that uses BM25, and (ii) a re-ranking module that combines the score of a BERT ranking mo
Passage retrieval addresses the problem of locating relevant passages, usually from a large corpus, given a query. In practice, lexical term-matching algorithms like BM25 are popular choices for retrieval owing to their efficiency. However, term-base