ﻻ يوجد ملخص باللغة العربية
Exploiting the inner-shot and inter-shot dependencies is essential for key-shot based video summarization. Current approaches mainly devote to modeling the video as a frame sequence by recurrent neural networks. However, one potential limitation of the sequence models is that they focus on capturing local neighborhood dependencies while the high-order dependencies in long distance are not fully exploited. In general, the frames in each shot record a certain activity and vary smoothly over time, but the multi-hop relationships occur frequently among shots. In this case, both the local and global dependencies are important for understanding the video content. Motivated by this point, we propose a Reconstructive Sequence-Graph Network (RSGN) to encode the frames and shots as sequence and graph hierarchically, where the frame-level dependencies are encoded by Long Short-Term Memory (LSTM), and the shot-level dependencies are captured by the Graph Convolutional Network (GCN). Then, the videos are summarized by exploiting both the local and global dependencies among shots. Besides, a reconstructor is developed to reward the summary generator, so that the generator can be optimized in an unsupervised manner, which can avert the lack of annotated data in video summarization. Furthermore, under the guidance of reconstruction loss, the predicted summary can better preserve the main video content and shot-level dependencies. Practically, the experimental results on three popular datasets i.e., SumMe, TVsum and VTW) have demonstrated the superiority of our proposed approach to the summarization task.
A generic video summary is an abridged version of a video that conveys the whole story and features the most important scenes. Yet the importance of scenes in a video is often subjective, and users should have the option of customizing the summary by
With the explosive growth of video data, video summarization, which attempts to seek the minimum subset of frames while still conveying the main story, has become one of the hottest topics. Nowadays, substantial achievements have been made by supervi
Audio and vision are two main modalities in video data. Multimodal learning, especially for audiovisual learning, has drawn considerable attention recently, which can boost the performance of various computer vision tasks. However, in video summariza
Traditional video summarization methods generate fixed video representations regardless of user interest. Therefore such methods limit users expectations in content search and exploration scenarios. Multi-modal video summarization is one of the metho
This paper presents a Neural Aggregation Network (NAN) for video face recognition. The network takes a face video or face image set of a person with a variable number of face images as its input, and produces a compact, fixed-dimension feature repres