ﻻ يوجد ملخص باللغة العربية
Simulation models are widely used in practice to facilitate decision-making in a complex, dynamic and stochastic environment. But they are computationally expensive to execute and optimize, due to lack of analytical tractability. Simulation optimization is concerned with developing efficient sampling schemes -- subject to a computational budget -- to solve such optimization problems. To mitigate the computational burden, surrogates are often constructed using simulation outputs to approximate the response surface of the simulation model. In this tutorial, we provide an up-to-date overview of surrogate-based methods for simulation optimization with continuous decision variables. Typical surrogates, including linear basis function models and Gaussian processes, are introduced. Surrogates can be used either as a local approximation or a global approximation. Depending on the choice, one may develop algorithms that converge to either a local optimum or a global optimum. Representative examples are presented for each category. Recent advances in large-scale computation for Gaussian processes are also discussed.
Gradient-free optimization methods, such as surrogate based optimization (SBO) methods, and genetic (GAs), or evolutionary (EAs) algorithms have gained popularity in the field of constrained optimization of expensive black-box functions. However, con
Some popular functions used to test global optimization algorithms have multiple local optima, all with the same value, making them all global optima. It is easy to make them more challenging by fortifying them via adding a localized bump at the loca
A probabilistic performance-oriented control design optimization approach is introduced for flight systems. Aiming at estimating rare-event probabilities accurately and efficiently, subset simulation is combined with surrogate modeling techniques to
We address the problem of estimating the effect of intervening on a set of variables X from experiments on a different set, Z, that is more accessible to manipulation. This problem, which we call z-identifiability, reduces to ordinary identifiability
In this article we develop a gradient-based algorithm for the solution of multiobjective optimization problems with uncertainties. To this end, an additional condition is derived for the descent direction in order to account for inaccuracies in the g