ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparative study of electric currents and energetic particle fluxes in a solar flare and Earth magnetospheric substorm

150   0   0.0 ( 0 )
 نشر من قبل Anton Artemyev
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic field-line reconnection is a universal plasma process responsible for the conversion of magnetic field energy to the plasma heating and charged particle acceleration. Solar flares and Earths magnetospheric substorms are two most investigated dynamical systems where magnetic reconnection is believed to be responsible for global magnetic field reconfiguration and energization of plasma populations. Such a reconfiguration includes formation of a long-living current systems connecting the primary energy release region and cold dense conductive plasma of photosphere/ionosphere. In both flares and substorms the evolution of this current system correlates with formation and dynamics of energetic particle fluxes. Our study is focused on this similarity between flares and substorms. Using a wide range of datasets available for flare and substorm investigations, we compare qualitatively dynamics of currents and energetic particle fluxes for one flare and one substorm. We showed that there is a clear correlation between energetic particle bursts (associated with energy release due to magnetic reconnection) and magnetic field reconfiguration/formation of current system. We then discuss how datasets of in-situ measurements in the magnetospheric substorm can help in interpretation of datasets gathered for the solar flare.



قيم البحث

اقرأ أيضاً

The dynamical relationship between magnetic storms and magnetospheric substorms presents one of the most controversial problems of contemporary geospace research. Here, we tackle this issue by applying a causal inference approach to two corresponding indices in conjunction with several relevant solar wind variables. We demonstrate that the vertical component of the interplanetary magnetic field is the strongest and common driver of both, storms and substorms, and explains their the previously reported association. These results hold during both solar maximum and minimum phases and suggest that, at least based on the analyzed indices, there is no statistical evidence for a direct or indirect dependency between substorms and storms. A physical mechanism by which substorms drive storms or vice versa is, therefore, unlikely.
Heavy ion ratio abundances in Solar Energetic Particle (SEP) events, e.g.~Fe/O, often exhibit decreases over time. Using particle instruments on the ACE, SOHO and STEREO spacecraft, we analysed heavy ion data from 4 SEP events taking place between De cember 2006 and December 2014. We constructed 36 different ionic pairs and studied their time evolution in each event. We quantified the temporal behaviour of abundant SEP ratios by fitting the data to derive a decay time constant $B$. We also considered the ratio of ionic mass--to--charge for each pair, the $S$ value given e.g.~for Fe/O by $S_{rm Fe/O} = (M/Q)_{rm Fe}big/(M/Q)_{rm O}$. We found that the temporal behaviour of SEP ratios is ordered by the value of $S$: ratios with $S>1$ showed decreases over time (i.e.~$B<0$) and those with $S<1$ showed increases ($B>0$). We plotted $B$ as a function of $S$ and observed a clear monotonic dependence: ratios with a large $S$ decayed at a higher rate. A prominent discontinuity at $S=2.0$ (corresponding to He/H) was found in 3 of the 4 events, suggesting anomalous behaviour of protons. The X/H ratios often show an initial increase followed by a decrease, and decay at a slower rate. We discuss possible causes of the observed $B$ versus $S$ trends within current understanding of SEP propagation.
The PAMELA satellite experiment is providing first direct measurements of Solar Energetic Particles (SEPs) with energies from about 80 MeV to several GeV in near-Earth space, bridging the low energy data by other space-based instruments and the Groun d Level Enhancement (GLE) data by the worldwide network of neutron monitors. Its unique observational capabilities include the possibility of measuring the flux angular distribution and thus investigating possible anisotropies. This work reports the analysis methods developed to estimate the SEP energy spectra as a function of the particle pitch-angle with respect to the Interplanetary Magnetic Field (IMF) direction. The crucial ingredient is provided by an accurate simulation of the asymptotic exposition of the PAMELA apparatus, based on a realistic reconstruction of particle trajectories in the Earths magnetosphere. As case study, the results for the May 17, 2012 event are presented.
Recent results by the Van Allen Probes mission showed that the occurrence of energetic ion injections inside geosynchronous orbit could be very frequent throughout the main phase of a geomagnetic storm. Understanding, therefore, the formation and evo lution of energetic particle injections is critical in order to quantify their effect in the inner magnetosphere. We present a case study of a substorm event that occurred during a weak storm $textit{ Dst }$ $sim$ -40nT on 14 July 2013. Van Allen Probe B, inside geosynchronous orbit, observed two energetic proton injections within 10min, with different dipolarization signatures and duration. The first one is a dispersionless, short-timescale injection pulse accompanied by a sharp dipolarization signature, while the second one is a dispersed, longer-timescale injection pulse accompanied by a gradual dipolarization signature. We combined ground magnetometer data from various stations and in situ particle and magnetic field data from multiple satellites in the inner magnetosphere and near-Earth plasma sheet to determine the spatial extent of these injections, their temporal evolution, and their effects in the inner magnetosphere. Our results indicate that there are different spatial and temporal scales at which injections can occur in the inner magnetosphere and depict the necessity of multipoint observations of both particle and magnetic field data in order to determine these scales.
Observations at 1 au have confirmed that enhancements in measured energetic particle fluxes are statistically associated with rough magnetic fields, i.e., fields having atypically large spatial derivatives or increments, as measured by the Partial Va riance of Increments (PVI) method. One way to interpret this observation is as an association of the energetic particles with trapping or channeling within magnetic flux tubes, possibly near their boundaries. However, it remains unclear whether this association is a transport or local effect; i.e., the particles might have been energized at a distant location, perhaps by shocks or reconnection, or they might experience local energization or re-acceleration. The Parker Solar Probe (PSP), even in its first two orbits, offers a unique opportunity to study this statistical correlation closer to the corona. As a first step, we analyze the separate correlation properties of the energetic particles measured by the isois instruments during the first solar encounter. The distribution of time intervals between a specific type of event, i.e., the waiting time, can indicate the nature of the underlying process. We find that the isois observations show a power-law distribution of waiting times, indicating a correlated (non-Poisson) distribution. Analysis of low-energy isois data suggests that the results are consistent with the 1 au studies, although we find hints of some unexpected behavior. A more complete understanding of these statistical distributions will provide valuable insights into the origin and propagation of solar energetic particles, a picture that should become clear with future PSP orbits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا