ﻻ يوجد ملخص باللغة العربية
Nematic superconductors are characterized by an apparent crystal symmetry breaking that results in the anisotropy of the in-plain upper critical magnetic field $H_{c2}$. The symmetry breaking is usually attributed to the strain of the crystal lattice. The nature and the value of the strain are debatable. We perform systematic measurements of the $H_{c2}$ anisotropy in the high-quality Sr$_x$Bi$_2$Se$_3$ single crystals in the temperature range 1.8~K$<T<T_capprox 2.7$~K using temperature stabilization with an accuracy of 0.0001 K. We observe that in all tested samples the anisotropy is practically constant when $T<0.8 T_c$ and smoothly decreases at higher temperatures without any sign of singularity when $Trightarrow T_c$. Such a behavior can be understood in the framework of the Ginzburg-Landau (GL) theory for the nematic superconductors assuming that the samples are appreciably deformed. The nature of the strain, the values of the GL parameters, and the effects of disorder near $T_c$ are discussed. Similar measurements can be used to study a nature of the symmetry breaking in the other nematic superconductors.
For a noncentrosymmetric superconductor such as CePt3Si, we consider a Cooper pairing model with a two-component order parameter composed of spin-singlet and spin-triplet pairing components. We calculate the superfluid density tensor in the clean l
The iron-based superconductor FeSe has attracted much recent attention because of its simple crystal structure, distinct electronic structure and rich physics exhibited by itself and its derivatives. Determination of its intrinsic electronic structur
Recently discovered kagome superconductors AV3Sb5 (A=K, Rb, Cs) provide a fresh opportunity to realize and study correlation-driven electronic phenomena on a kagome lattice. The observation of a 2a0 by 2a0 charge density wave (CDW) in the normal stat
We consider the role of potential scatterers in the nematic phase of Fe-based superconductors above the transition temperature to the (pi,0) magnetic state but below the orthorhombic structural transition. The anisotropic spin fluctuations in this re
We have investigated the superconducting state of the non-centrosymmetric compound Re6Zr using magnetization, heat capacity, and muon-spin relaxation/rotation (muSR) measurements. Re6Zr has a superconducting transition temperature, Tc = 6.75 K. Trans