Temperature selective thermometry with sub-100 nanosecond time resolution using dressed-spin states in diamond


الملخص بالإنكليزية

Versatile nanoscale sensors that are susceptible to changes in a variety of physical quantities often exhibit limited selectivity. We propose a novel scheme based on microwave-dressed spin states for optically probed nanoscale temperature detection using diamond quantum sensors, which provides selective sensitivity to temperature changes. By combining this scheme with a continuous pump-probe scheme using ensemble nitrogen-vacancy centers in nanodiamonds, we demonstrate a sub-100-nanosecond temporal resolution with thermal sensitivity of 3.7 K$cdot$Hz$^{-1/2}$ that is insensitive to variations in external magnetic fields on the order of 2 G. The presented results are favorable for the practical application of time-resolved nanoscale quantum sensing, where temperature imaging is required under fluctuating magnetic fields.

تحميل البحث