ﻻ يوجد ملخص باللغة العربية
Zero-error single-channel source coding has been studied extensively over the past decades. Its natural multi-channel generalization is however not well investigated. While the special case with multiple symmetric-alphabet channels was studied a decade ago, codes in such setting have no advantage over single-channel codes in data compression, making them worthless in most applications. With essentially no development since the last decade, in this paper, we break the stalemate by showing that it is possible to beat single-channel source codes in terms of compression assuming asymmetric-alphabet channels. We present the multi-channel analog of several classical results in single-channel source coding, such as that a multi-channel Huffman code is an optimal tree-decodable code. We also show some evidences that finding an efficient construction of multi-channel Huffman codes may be hard. Nevertheless, we propose a suboptimal code construction whose redundancy is guaranteed to be no larger than that of an optimal single-channel source code.
This paper presents new lower and upper bounds for the compression rate of binary prefix codes optimized over memoryless sources according to various nonlinear codeword length objectives. Like the most well-known redundancy bounds for minimum average
We present new constructions of codes for asymmetric channels for both binary and nonbinary alphabets, based on methods of generalized code concatenation. For the binary asymmetric channel, our methods construct nonlinear single-error-correcting code
We construct a joint coordination-channel polar coding scheme for strong coordination of actions between two agents $mathsf X$ and $mathsf Y$, which communicate over a discrete memoryless channel (DMC) such that the joint distribution of actions foll
In this paper, we focus on the two-user Gaussian interference channel (GIC), and study the Han-Kobayashi (HK) coding/decoding strategy with the objective of designing low-density parity-check (LDPC) codes. A code optimization algorithm is proposed wh
Polar codes are introduced for discrete memoryless broadcast channels. For $m$-user deterministic broadcast channels, polarization is applied to map uniformly random message bits from $m$ independent messages to one codeword while satisfying broadcas