ترغب بنشر مسار تعليمي؟ اضغط هنا

Averages and maximal averages over Product j-varieties in finite fields

373   0   0.0 ( 0 )
 نشر من قبل Doowon Koh
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study both averaging and maximal averaging problems for Product $j$-varieties defined by $Pi_j={xin mathbb F_q^d: prod_{k=1}^d x_k=j}$ for $jin mathbb F_q^*,$ where $mathbb F_q^d$ denotes a $d$-dimensional vector space over the finite field $mathbb F_q$ with $q$ elements. We prove the sharp $L^pto L^r$ boundedness of averaging operators associated to Product $j$-varieties. We also obtain the optimal $L^p$ estimate for a maximal averaging operator related to a family of Product $j$-varieties ${Pi_j}_{jin mathbb F_q^*}.$



قيم البحث

اقرأ أيضاً

We study maximal operators associated to singular averages along finite subsets $Sigma$ of the Grassmannian $mathrm{Gr}(d,n)$ of $d$-dimensional subspaces of $mathbb R^n$. The well studied $d=1$ case corresponds to the the directional maximal functio n with respect to arbitrary finite subsets of $mathrm{Gr}(1,n)=mathbb S^{n-1}$. We provide a systematic study of all cases $1leq d<n$ and prove essentially sharp $L^2(mathbb R^n)$ bounds for the maximal subspace averaging operator in terms of the cardinality of $Sigma$, with no assumption on the structure of $Sigma$. In the codimension $1$ case, that is $n=d+1$, we prove the precise critical weak $(2,2)$-bound. Drawing on the analogy between maximal subspace averages and $(d,n)$-Nikodym maximal averages, we also formulate the appropriate maximal Nikodym conjecture for general $1<d<n$ by providing examples that determine the critical $L^p$-space for the $(d,n)$-Nikodym problem. Unlike the $d=1$ case, the maximal Kakeya and Nikodym problems are shown not to be equivalent when $d>1$. In this context, we prove the best possible $L^2(mathbb R^n)$-bound for the $(d,n)$-Nikodym maximal function for all combinations of dimension and codimension. Our estimates rely on Fourier analytic almost orthogonality principles, combined with polynomial partitioning, but we also use spatial analysis based on the precise calculation of intersections of $d$-dimensional plates in $mathbb R^n$.
We prove a point-wise and average bound for the number of incidences between points and hyper-planes in vector spaces over finite fields. While our estimates are, in general, sharp, we observe an improvement for product sets and sets contained in a s phere. We use these incidence bounds to obtain significant improvements on the arithmetic problem of covering ${mathbb F}_q$, the finite field with q elements, by $A cdot A+... +A cdot A$, where A is a subset ${mathbb F}_q$ of sufficiently large size. We also use the incidence machinery we develope and arithmetic constructions to study the Erdos-Falconer distance conjecture in vector spaces over finite fields. We prove that the natural analog of the Euclidean Erdos-Falconer distance conjecture does not hold in this setting due to the influence of the arithmetic. On the positive side, we obtain good exponents for the Erdos -Falconer distance problem for subsets of the unit sphere in $mathbb F_q^d$ and discuss their sharpness. This results in a reasonably complete description of the Erdos-Falconer distance problem in higher dimensional vector spaces over general finite fields.
153 - Daewoong Cheong , Doowon Koh , 2019
We study the finite field extension estimates for Hamming varieties $H_j, jin mathbb F_q^*,$ defined by $H_j={xin mathbb F_q^d: prod_{k=1}^d x_k=j},$ where $mathbb F_q^d$ denotes the $d$-dimensional vector space over a finite field $mathbb F_q$ with $q$ elements. We show that although the maximal Fourier decay bound on $H_j$ away from the origin is not good, the Stein-Tomas $L^2to L^r$ extension estimate for $H_j$ holds.
86 - Robert Kesler 2018
We exhibit a range of $ell ^{p}(mathbb{Z}^d)$-improving properties for the discrete spherical maximal average in every dimension $dgeq 5$. The strategy used to show these improving properties is then adapted to establish sparse bounds, which extend t he discrete maximal theorem of Magyar, Stein, and Wainger to weighted spaces. In particular, the sparse bounds imply that the discrete spherical maximal average is a bounded map from $ell^2(w)$ into $ell^2(w)$ provided $w^{frac{d}{d-4}+delta}$ belongs to the Muckenhoupt class $A_2$ for some $delta>0.$
For a polynomial $P$ mapping the integers into the integers, define an averaging operator $A_{N} f(x):=frac{1}{N}sum_{k=1}^N f(x+P(k))$ acting on functions on the integers. We prove sufficient conditions for the $ell^{p}$-improving inequality begin{e quation*} |A_N f|_{ell^q(mathbb{Z})} lesssim_{P,p,q} N^{-d(frac{1}{p}-frac{1}{q})} |f|_{ell^p(mathbb{Z})}, qquad N inmathbb{N}, end{equation*} where $1leq p leq q leq infty$. For a range of quadratic polynomials, the inequalities established are sharp, up to the boundary of the allowed pairs of $(p,q)$. For degree three and higher, the inequalities are close to being sharp. In the quadratic case, we appeal to discrete fractional integrals as studied by Stein and Wainger. In the higher degree case, we appeal to the Vinogradov Mean Value Theorem, recently established by Bourgain, Demeter, and Guth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا