ﻻ يوجد ملخص باللغة العربية
Wu & Peek (2020) predict SDSS-quality spectra based on Pan-STARRS broad-band textit{grizy} images using machine learning (ML). In this letter, we test their prediction for a unique object, UGC 2885 (Rubins galaxy), the largest and most massive, isolated disk galaxy in the local Universe ($D<100$ Mpc). After obtaining the ML predicted spectrum, we compare it to all existing spectroscopic information that is comparable to an SDSS spectrum of the central region: two archival spectra, one extracted from the VIRUS-P observations of this galaxy, and a new, targeted MMT/Binospec observation. Agreement is qualitatively good, though the ML prediction prefers line ratios slightly more towards those of an active galactic nucleus (AGN), compared to archival and VIRUS-P observed values. The MMT/Binospec nuclear spectrum unequivocally shows strong emission lines except H$beta$, the ratios of which are consistent with AGN activity. The ML approach to galaxy spectra may be a viable way to identify AGN supplementing NIR colors. How such a massive disk galaxy ($M^* = 10^{11}$ M$_odot$), which uncharacteristically shows no sign of interaction or mergers, manages to fuel its central AGN remains to be investigated.
Understanding the impact of halo properties beyond halo mass on the clustering of galaxies (namely galaxy assembly bias) remains a challenge for contemporary models of galaxy clustering. We explore the use of machine learning to predict the halo occu
AGNs are very powerful galaxies characterized by extremely bright emissions coming out from their central massive black holes. Knowing the redshifts of AGNs provides us with an opportunity to determine their distance to investigate important astrophy
In this work we explore the possibility of applying machine learning methods designed for one-dimensional problems to the task of galaxy image classification. The algorithms used for image classification typically rely on multiple costly steps, such
We present a star/galaxy classification for the Southern Photometric Local Universe Survey (S-PLUS), based on a Machine Learning approach: the Random Forest algorithm. We train the algorithm using the S-PLUS optical photometry up to $r$=21, matched t
Galaxy morphology is a fundamental quantity, that is essential not only for the full spectrum of galaxy-evolution studies, but also for a plethora of science in observational cosmology. While a rich literature exists on morphological-classification t