ﻻ يوجد ملخص باللغة العربية
This is a translation from Latin of E348 Methodus facilis motus corporum coelestium utcunque perturbatos ad rationem calculi astronomici revocandi, in which Euler develops a method to alleviate the astronomical computations in a typical celestial three-body problem represented by Sun, Earth and Moon. In this work, Eulers approach consists of two parts: geometrical and mechanical. The geometrical part contains most of the analytical developments, in which Euler makes use of Cartesian and spherical trigonometry as well - the latter not always in a clear enough way. With few sketches to show the geometrical constructions envisaged by Euler - represented by several geometrical variables -, it is a hard to follow publication. The Translator, on trying to clear the way to the non-specialized reader, used the best of his abilities to add his own figures to the translation. In the latter part of the work, Euler particularizes his developments to the Moon, ending up with eight coupled differential equations for resolving the perturbed motion of this celestial body, which makes his claim of an easy method as being rather fallacious. Despite showing great analytical skills, Euler did not give indications on how this system of equations could be solved, which renders his efforts practically useless in the determination of the variations of the nodal line and inclination of the Moons orbit.
This is a translation from Latin of E840 De motu cometarum in orbitis parabolicis, solem in foco habentibus, in which Euler addresses six problems related to comets in heliocentric parabolic orbits. Problem 1: Find the true anomaly of a heliocentric
This is an English translation of E579 in which the introductory remarks are in French, while Eulers original text is in Latin. By considering the balance of forces acting on a raising balloon on an isothermal atmosphere, namely the weight of the bal
An attempt is made to avoid the difficulty of the infinite reaction of the electron on itself, which occurs in quantum electrodynamics, by introducing difference equations instead of differential equations. This vision allows the difficulty of the re
Scatterings of galactic dark matter (DM) particles with the constituents of celestial bodies could result in their accumulation within these objects. Nevertheless, the finite temperature of the medium sets a minimum mass, the evaporation mass, that D
This is an annotated translation from German of Untersuchung einer nach den Eulerschen Vorschlagen (1754) gebauten Wasserturbine [Investigation of a water turbine built according to Eulers proposals (1754)] that reports the tests results of a modern