ترغب بنشر مسار تعليمي؟ اضغط هنا

Looking for COVID-19 misinformation in multilingual social media texts

83   0   0.0 ( 0 )
 نشر من قبل Genoveva Vargas-Solar
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents the Multilingual COVID-19 Analysis Method (CMTA) for detecting and observing the spread of misinformation about this disease within texts. CMTA proposes a data science (DS) pipeline that applies machine learning models for processing, classifying (Dense-CNN) and analyzing (MBERT) multilingual (micro)-texts. DS pipeline data preparation tasks extract features from multilingual textual data and categorize it into specific information classes (i.e., false, partly false, misleading). The CMTA pipeline has been experimented with multilingual micro-texts (tweets), showing misinformation spread across different languages. To assess the performance of CMTA and put it in perspective, we performed a comparative analysis of CMTA with eight monolingual models used for detecting misinformation. The comparison shows that CMTA has surpassed various monolingual models and suggests that it can be used as a general method for detecting misinformation in multilingual micro-texts. CMTA experimental results show misinformation trends about COVID-19 in different languages during the first pandemic months.



قيم البحث

اقرأ أيضاً

The ongoing Coronavirus (COVID-19) pandemic highlights the inter-connectedness of our present-day globalized world. With social distancing policies in place, virtual communication has become an important source of (mis)information. As increasing numb er of people rely on social media platforms for news, identifying misinformation and uncovering the nature of online discourse around COVID-19 has emerged as a critical task. To this end, we collected streaming data related to COVID-19 using the Twitter API, starting March 1, 2020. We identified unreliable and misleading contents based on fact-checking sources, and examined the narratives promoted in misinformation tweets, along with the distribution of engagements with these tweets. In addition, we provide examples of the spreading patterns of prominent misinformation tweets. The analysis is presented and updated on a publically accessible dashboard (https://usc-melady.github.io/COVID-19-Tweet-Analysis) to track the nature of online discourse and misinformation about COVID-19 on Twitter from March 1 - June 5, 2020. The dashboard provides a daily list of identified misinformation tweets, along with topics, sentiments, and emerging trends in the COVID-19 Twitter discourse. The dashboard is provided to improve visibility into the nature and quality of information shared online, and provide real-time access to insights and information extracted from the dataset.
COVID-19 pandemic has generated what public health officials called an infodemic of misinformation. As social distancing and stay-at-home orders came into effect, many turned to social media for socializing. This increase in social media usage has ma de it a prime vehicle for the spreading of misinformation. This paper presents a mechanism to detect COVID-19 health-related misinformation in social media following an interdisciplinary approach. Leveraging social psychology as a foundation and existing misinformation frameworks, we defined misinformation themes and associated keywords incorporated into the misinformation detection mechanism using applied machine learning techniques. Next, using the Twitter dataset, we explored the performance of the proposed methodology using multiple state-of-the-art machine learning classifiers. Our method shows promising results with at most 78% accuracy in classifying health-related misinformation versus true information using uni-gram-based NLP feature generations from tweets and the Decision Tree classifier. We also provide suggestions on alternatives for countering misinformation and ethical consideration for the study.
We address the diffusion of information about the COVID-19 with a massive data analysis on Twitter, Instagram, YouTube, Reddit and Gab. We analyze engagement and interest in the COVID-19 topic and provide a differential assessment on the evolution of the discourse on a global scale for each platform and their users. We fit information spreading with epidemic models characterizing the basic reproduction numbers $R_0$ for each social media platform. Moreover, we characterize information spreading from questionable sources, finding different volumes of misinformation in each platform. However, information from both reliable and questionable sources do not present different spreading patterns. Finally, we provide platform-dependent numerical estimates of rumors amplification.
Hate speech and toxic comments are a common concern of social media platform users. Although these comments are, fortunately, the minority in these platforms, they are still capable of causing harm. Therefore, identifying these comments is an importa nt task for studying and preventing the proliferation of toxicity in social media. Previous work in automatically detecting toxic comments focus mainly in English, with very few work in languages like Brazilian Portuguese. In this paper, we propose a new large-scale dataset for Brazilian Portuguese with tweets annotated as either toxic or non-toxic or in different types of toxicity. We present our dataset collection and annotation process, where we aimed to select candidates covering multiple demographic groups. State-of-the-art BERT models were able to achieve 76% macro-F1 score using monolingual data in the binary case. We also show that large-scale monolingual data is still needed to create more accurate models, despite recent advances in multilingual approaches. An error analysis and experiments with multi-label classification show the difficulty of classifying certain types of toxic comments that appear less frequently in our data and highlights the need to develop models that are aware of different categories of toxicity.
Rumors and conspiracy theories thrive in environments of low confidence and low trust. Consequently, it is not surprising that ones related to the Covid-19 pandemic are proliferating given the lack of any authoritative scientific consensus on the vir us, its spread and containment, or on the long term social and economic ramifications of the pandemic. Among the stories currently circulating are ones suggesting that the 5G network activates the virus, that the pandemic is a hoax perpetrated by a global cabal, that the virus is a bio-weapon released deliberately by the Chinese, or that Bill Gates is using it as cover to launch a global surveillance regime. While some may be quick to dismiss these stories as having little impact on real-world behavior, recent events including the destruction of property, racially fueled attacks against Asian Americans, and demonstrations espousing resistance to public health orders countermand such conclusions. Inspired by narrative theory, we crawl social media sites and news reports and, through the application of automated machine-learning methods, discover the underlying narrative frameworks supporting the generation of these stories. We show how the various narrative frameworks fueling rumors and conspiracy theories rely on the alignment of otherwise disparate domains of knowledge, and consider how they attach to the broader reporting on the pandemic. These alignments and attachments, which can be monitored in near real-time, may be useful for identifying areas in the news that are particularly vulnerable to reinterpretation by conspiracy theorists. Understanding the dynamics of storytelling on social media and the narrative frameworks that provide the generative basis for these stories may also be helpful for devising methods to disrupt their spread.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا