ﻻ يوجد ملخص باللغة العربية
We present a comprehensive review of recent developments in the field of chiral plasmonics. Significant advances have been made recently in understanding the working principles of chiral plasmonic structures. With advances in micro- and nanofabrication techniques, a variety of chiral plasmonic nanostructures have been experimentally realized; these tailored chiroptical properties vastly outperform those of their molecular counterparts. We focus on chiral plasmonic nanostructures created using bottom-up approaches, which not only allow for rational design and fabrication but most intriguingly in many cases also enable dynamic manipulation and tuning of chiroptical responses. We first discuss plasmon-induced chirality, resulting from the interaction of chiral molecules with plasmonic excitations. Subsequently, we discuss intrinsically chiral colloids, which give rise to optical chirality owing to their chiral shapes. Finally, we discuss plasmonic chirality, achieved by arranging achiral plasmonic particles into handed configurations on static or active templates. Chiral plasmonic nanostructures are very promising candidates for real-life applications owing to their significantly larger optical chirality than natural molecules. In addition, chiral plasmonic nanostructures offer engineerable and dynamic chiroptical responses, which are formidable to achieve in molecular systems. We thus anticipate that the field of chiral plasmonics will attract further widespread attention in applications ranging from enantioselective analysis to chiral sensing, structural determination, and in situ ultrasensitive detection of multiple disease biomarkers, as well as optical monitoring of transmembrane transport and intracellular metabolism.
Displays are an indispensable medium to visually convey information in our daily life. Although conventional dye-based color displays have been rigorously advanced by world leading companies, critical issues still remain. For instance, color fading a
Featured by prominent flexibility and fidelity in producing sophisticated stereoscopic structures transdimensionally, three-dimensional (3D) laser printing technique has vastly extended the toolkit for delivering diverse functional devices. Yet chira
Selective configuration control of plasmonic nanostructures using either top-down or bottom-up approaches has remained challenging in the field of active plasmonics. We demonstrate the realization of DNA-assembled reconfigurable plasmonic metamolecul
Abstract: An induced-transmission filter (ITF) uses an ultrathin layer of metal positioned at an electric-field node within a dielectric thin-film bandpass filter to select one transmission band while suppressing other transmission bands that would h
Cylindrical vector beams (CVBs), which possesses polarization distribution of rotational symmetry on the transverse plane, can be developed in many optical technologies. Conventional methods to generate CVBs contain redundant interferometers or need