ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence of topological edge states in a superconducting nonsymmorphic nodal-line semimetal

140   0   0.0 ( 0 )
 نشر من قبل Lixuan Xu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topological materials host fascinating low dimensional gapless states at the boundary. As a prominent example, helical topological edge states (TESs) of two-dimensional topological insulators (2DTIs) and their stacked three-dimensional (3D) equivalent, weak topological insulators (WTIs), have sparked research enthusiasm due to their potential application in the next generation of electronics/spintronics with low dissipation. Here, we propose layered superconducting material CaSn as a WTI with nontrivial Z2 as well as nodal line semimetal protected by crystalline non-symmorphic symmetry. Our systematic angle-resolved photoemission spectroscopy (ARPES) investigation on the electronic structure exhibits excellent agreement with the calculation. Furthermore, scanning tunnelling microscopy/spectroscopy (STM/STS) at the surface step edge shows signatures of the expected TES. These integrated evidences from ARPES, STM/STS measurement and corresponding ab initio calculation strongly support the existence of TES in the non-symmorphic nodal line semimetal CaSn, which may become a versatile material platform to realize multiple exotic electronic states as well as topological superconductivity.



قيم البحث

اقرأ أيضاً

We investigate systematically the bulk and surface electronic structure of the candidate nodal-line semimetal CaAgAs by angle resolved photoemission spectroscopy and density functional calculations. We observed a metallic, linear, non-$k_z$-dispersiv e surface band that coincides with the high-binding-energy part of the theoretical topological surface state, proving the topological nontriviality of the system. An overall downshift of the experimental Fermi level points to a rigid-band-like $p$-doping of the samples, due possibly to Ag vacancies in the as-grown crystals.
The nodal line semimetals have attracted much attention due to their unique topological electronic structure and exotic physical properties. A genuine nodal line semimetal is qualified by the presence of Dirac nodes along a line in the momentum space that are protected against the spin-orbit coupling. In addition, it requires that the Dirac points lie close to the Fermi level allowing to dictate the macroscopic physical properties. Although the material realization of nodal line semimetals have been theoretically predicted in numerous compounds, only a few of them have been experimentally verified and the realization of a genuine nodal line semimetal is particularly rare. Here we report the realization of a genuine nodal line semimetal in LaSbTe. We investigated the electronic structure of LaSbTe by band structure calculations and angle-resolved photoemission (ARPES) measurements. Taking spin-orbit coupling into account, our band structure calculations predict that a nodal line is formed in the boundary surface of the Brillouin zone which is robust and lies close to the Fermi level. The Dirac nodes along the X-R line in momentum space are directly observed in our ARPES measurements and the energies of these Dirac nodes are all close to the Fermi level. These results constitute clear evidence that LaSbTe is a genuine nodal line semimetal,providing a new platform to explore for novel phenomena and possible applications associated with the nodal line semimetals.
286 - Yun-Tak Oh , Hong-Guk Min , 2019
Previously known three-dimensional Dirac semimetals (DSs) occur in two types -- topological DSs and nonsymmorphic DSs. Here we present a novel three-dimensional DS that exhibits both features of the topological and nonsymmorphic DSs. We introduce a m inimal tight-binding model for the space group 100 that describes a layered crystal made of two-dimensional planes in the $p4g$ wallpaper group. Using this model, we demonstrate that double glide-mirrors allow a noncentrosymmetric three-dimensional DS that hosts both symmetry-enforced Dirac points at time-reversal invariant momenta and twofold-degenerate Weyl nodal lines on a glide-mirror-invariant plane in momentum space. The proposed DS allows for rich topological physics manifested in both topological surface states and topological phase diagrams, which we discuss in detail. We also perform first-principles calculations to predict that the proposed DS is realized in a set of existing materials BaLa$X$B$Y_5$, where $X$ = Cu or Au, and $Y$ = O, S, or Se.
Dirac nodal-line semimetals with the linear bands crossing along a line or loop, represent a new topological state of matter. Here, by carrying out magnetotransport measurements and performing first-principle calculations, we demonstrate that such a state has been realized in high-quality single crystals of SrAs3. We obtain the nontrivial pi Berry phase by analysing the Shubnikov-de Haas quantum oscillations. We also observe a robust negative longitudinal magnetoresistance induced by the chiral anomaly. Accompanying first-principles calculations identify that a single hole pocket enclosing the loop nodes is responsible for these observations.
431 - C. C. Gu , J. Hu , X. L. Chen 2019
Tunable symmetry breaking plays a crucial role for the manipulation of topological phases of quantum matter. Here, through combined high-pressure magneto-transport measurements, Raman spectroscopy, and X-ray diffraction, we demonstrate a pressure-ind uced topological phase transition in nodal-line semimetal ZrSiS. Symmetry analysis and first-principles calculations suggest that this pressure-induced topological phase transition may be attributed to weak lattice distortions by non-hydrostatic compression, which breaks some crystal symmetries, such as the mirror and inversion symmetries. This finding provides some experimental evidence for crystal symmetry protection for the topological semimetal state, which is at the heart of topological relativistic fermion physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا