ﻻ يوجد ملخص باللغة العربية
Perceiving nanoscale ferroelectric phenomena from real space is of great importance for elucidating underlying ferroelectric physics. During the past decades, nanoscale ferroelectric characterization has mainly relied on the Piezoresponse Force Microscopy (PFM), however, the fundamental limitations of PFM have made the nanoscale ferroelectric studies encounter significant bottlenecks. In this study, a high-resolution non-contact ferroelectric measurement, named Non-Contact Heterodyne Electrostrain Force Microscopy (NC-HEsFM), has been introduced firstly. It has been unambiguously demonstrated that NC-HEsFM can operate on multiple eigenmodes to perform ideal high-resolution ferroelectric domain mapping, standard ferroelectric hysteresis loop measurement and controllable domain manipulation. With using quartz tuning fork (QTF) sensor and heterodyne detection, NC-HEsFM shows an unprecedented capability in achieving real non-contact yet non-destructive ferroelectric characterization with negligible electrostatic force effect. It is believed that NC-HEsFM can be extensively used in various ferroelectric or piezoelectric studies with providing substantially improved characterization performance. Meanwhile, the QTF-based force detection makes NC-HEsFM highly compatible for high-vacuum and low-temperature environments, providing ideal conditions for achieving an ultra-high spatial resolution to investigate the most intrinsic ferroelectric phenomena.
The nondestructive imaging of subsurface structures on the nanometer scale has been a long-standing desire in both science and industry. A few impressive images were published so far that demonstrate the general feasibility by combining ultrasound wi
In electron microscopy, charging of non-conductive biological samples by focused electron beams hinders their high-resolution imaging. Gold or platinum coatings have been commonly used to prevent such sample charging, but it disables further quantita
We demonstrate a new method for non-destructive imaging of laser-cooled atoms. This spatial heterodyne technique forms a phase image by interfering a strong carrier laser beam with a weak probe beam that passes through the cold atom cloud. The figure
Epitaxial graphene grown on transition metal surfaces typically exhibits a moire pattern due to the lattice mismatch between graphene and the underlying metal surface. We use both scanning tunneling microscopy (STM) and atomic force microscopy (AFM)
We present a full analysis of the contrast mechanisms for the detection of ferroelectric domains on all faces of bulk single crystals using scanning force microscopy exemplified on hexagonally poled lithium niobate. The domain contrast can be attribu