ترغب بنشر مسار تعليمي؟ اضغط هنا

A Multivariate Density Forecast Approach for Online Power System Security Assessment

92   0   0.0 ( 0 )
 نشر من قبل Zichao Meng
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

A multivariate density forecast model based on deep learning is designed in this paper to forecast the joint cumulative distribution functions (JCDFs) of multiple security margins in power systems. Differing from existing multivariate density forecast models, the proposed method requires no a priori hypotheses on the distribution of forecasting targets. In addition, based on the universal approximation capability of neural networks, the value domain of the proposed approach has been proven to include all continuous JCDFs. The forecasted JCDF is further employed to calculate the deterministic security assessment index evaluating the security level of future power system operations. Numerical tests verify the superiority of the proposed method over current multivariate density forecast models. The deterministic security assessment index is demonstrated to be more informative for operators than security margins as well.



قيم البحث

اقرأ أيضاً

Increasing the penetration of variable generation has a substantial effect on the operational reliability of power systems. The higher level of uncertainty that stems from this variability makes it more difficult to determine whether a given operatin g condition will be secure or insecure. Data-driven techniques provide a promising way to identify security rules that can be embedded in economic dispatch model to keep power system operating states secure. This paper proposes using a sparse weighted oblique decision tree to learn accurate, understandable, and embeddable security rules that are linear and can be extracted as sparse matrices using a recursive algorithm. These matrices can then be easily embedded as security constraints in power system economic dispatch calculations using the Big-M method. Tests on several large datasets with high renewable energy penetration demonstrate the effectiveness of the proposed method. In particular, the sparse weighted oblique decision tree outperforms the state-of-art weighted oblique decision tree while keeping the security rules simple. When embedded in the economic dispatch, these rules significantly increase the percentage of secure states and reduce the average solution time.
Modern power systems face a grand challenge in grid management due to increased electricity demand, imminent disturbances, and uncertainties associated with renewable generation, which can compromise grid security. The security assessment is directly connected to the robustness of the operating condition and is evaluated by analyzing proximity to the power flow solution spaces boundary. Calculating location of such a boundary is a computationally challenging task, linked to the power flow equations non-linear nature, presence of technological constraints, and complicated network topology. In this paper we introduce a general framework to characterize points on the power flow solution space boundary in terms of auxiliary variables subject to algebraic constraints. Then we develop an adaptive continuation algorithm to trace 1-dimensional sections of boundary curves which exhibits robust performance and computational tractability. Implementation of the algorithm is described in detail, and its performance is validated on different test networks.
This paper proposes a novel approach to estimate the steady-state angle stability limit (SSASL) by using the nonlinear power system dynamic model in the modal space. Through two linear changes of coordinates and a simplification introduced by the ste ady-state condition, the nonlinear power system dynamic model is transformed into a number of single-machine-like power systems whose power-angle curves can be derived and used for estimating the SSASL. The proposed approach estimates the SSASL of angles at all machines and all buses without the need for manually specifying the scenario, i.e. setting sink and source areas, and also without the need for solving multiple nonlinear power flows. Case studies on 9-bus and 39-bus power systems demonstrate that the proposed approach is always able to capture the aperiodic instability in an online environment, showing promising performance in the online monitoring of the steady-state angle stability over the traditional power flow-based analysis.
89 - Yahui Li , Yang Li , Yuanyuan Sun 2018
As one important means of ensuring secure operation in a power system, the contingency selection and ranking methods need to be more rapid and accurate. A novel method-based least absolute shrinkage and selection operator (Lasso) algorithm is propose d in this paper to apply to online static security assessment (OSSA). The assessment is based on a security index, which is applied to select and screen contingencies. Firstly, the multi-step adaptive Lasso (MSA-Lasso) regression algorithm is introduced based on the regression algorithm, whose predictive performance has an advantage. Then, an OSSA module is proposed to evaluate and select contingencies in different load conditions. In addition, the Lasso algorithm is employed to predict the security index of each power system operation state with the consideration of bus voltages and power flows, according to Newton-Raphson load flow (NRLF) analysis in post-contingency states. Finally, the numerical results of applying the proposed approach to the IEEE 14-bus, 118-bus, and 300-bus test systems demonstrate the accuracy and rapidity of OSSA.
143 - Yiwen Lu , Yilin Mo 2021
This paper considers the data-driven linear-quadratic regulation (LQR) problem where the system parameters are unknown and need to be identified in real time. Contrary to existing system identification and data-driven control methods, which typically require either offline data collection or multiple resets, we propose an online non-episodic algorithm that gains knowledge about the system from a single trajectory. The algorithm guarantees that both the identification error and the suboptimality gap of control performance in this trajectory converge to zero almost surely. Furthermore, we characterize the almost sure convergence rates of identification and control, and reveal an optimal trade-off between exploration and exploitation. We provide a numerical example to illustrate the effectiveness of our proposed strategy.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا