ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent Advances on Sub-Nyquist Sampling-Based Wideband Spectrum Sensing

92   0   0.0 ( 0 )
 نشر من قبل Bin Wang
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cognitive radio (CR) is a promising technology enabling efficient utilization of the spectrum resource for future wireless systems. As future CR networks are envisioned to operate over a wide frequency range, advanced wideband spectrum sensing (WBSS) capable of quickly and reliably detecting idle spectrum bands across a wide frequency span is essential. In this article, we provide an overview of recent advances on sub-Nyquist sampling-based WBSS techniques, including compressed sensing-based methods and compressive covariance sensing-based methods. An elaborate discussion of the pros and cons of each approach is presented, along with some challenging issues for future research. A comparative study suggests that the compressive covariance sensing-based approach offers a more competitive solution for reliable real-time WBSS.



قيم البحث

اقرأ أيضاً

We present a mixed analog-digital spectrum sensing method that is especially suited to the typical wideband setting of cognitive radio (CR). The advantages of our system with respect to current architectures are threefold. First, our analog front-end is fixed and does not involve scanning hardware. Second, both the analog-to-digital conversion (ADC) and the digital signal processing (DSP) rates are substantially below Nyquist. Finally, the sensing resources are shared with the reception path of the CR, so that the lowrate streaming samples can be used for communication purposes of the device, besides the sensing functionality they provide. Combining these advantages leads to a real time map of the spectrum with minimal use of mobile resources. Our approach is based on the modulated wideband converter (MWC) system, which samples sparse wideband inputs at sub-Nyquist rates. We report on results of hardware experiments, conducted on an MWC prototype circuit, which affirm fast and accurate spectrum sensing in parallel to CR communication.
Introduction of spectrum-sharing in 5G and subsequent generation networks demand base-station(s) with the capability to characterize the wideband spectrum spanned over licensed, shared and unlicensed non-contiguous frequency bands. Spectrum character ization involves the identification of vacant bands along with center frequency and parameters (energy, modulation, etc.) of occupied bands. Such characterization at Nyquist sampling is area and power-hungry due to the need for high-speed digitization. Though sub-Nyquist sampling (SNS) offers an excellent alternative when the spectrum is sparse, it suffers from poor performance at low signal to noise ratio (SNR) and demands careful design and integration of digital reconstruction, tunable channelizer and characterization algorithms. In this paper, we propose a novel deep-learning framework via a single unified pipeline to accomplish two tasks: 1)~Reconstruct the signal directly from sub-Nyquist samples, and 2)~Wideband spectrum characterization. The proposed approach eliminates the need for complex signal conditioning between reconstruction and characterization and does not need complex tunable channelizers. We extensively compare the performance of our framework for a wide range of modulation schemes, SNR and channel conditions. We show that the proposed framework outperforms existing SNS based approaches and characterization performance approaches to Nyquist sampling-based framework with an increase in SNR. Easy to design and integrate along with a single unified deep learning framework make the proposed architecture a good candidate for reconfigurable platforms.
85 - Jehyuk Jang , Sanghun Im , 2017
A modulated wideband converter (MWC) has been introduced as a sub-Nyquist sampler that exploits a set of fast alternating pseudo random (PR) signals. Through parallel sampling branches, an MWC compresses a multiband spectrum by mixing it with PR sign als in the time domain, and acquires its sub-Nyquist samples. Previously, the ratio of compression was fully dependent on the specifications of PR signals. That is, to further reduce the sampling rate without information loss, faster and longer-period PR signals were needed. However, the implementation of such PR signal generators results in high power consumption and large fabrication area. In this paper, we propose a novel aliased modulated wideband converter (AMWC), which can further reduce the sampling rate of MWC with fixed PR signals. The main idea is to induce intentional signal aliasing at the analog-to-digital converter (ADC). In addition to the first spectral compression by the signal mixer, the intentional aliasing compresses the mixed spectrum once again. We demonstrate that AMWC reduces the number of sampling branches and the rate of ADC for lossless sub-Nyquist sampling without needing to upgrade the speed or period of PR signals. Conversely, for a given fixed number of sampling branches and sampling rate, AMWC improves the performance of signal reconstruction.
Conventional sub-Nyquist sampling methods for analog signals exploit prior information about the spectral support. In this paper, we consider the challenging problem of blind sub-Nyquist sampling of multiband signals, whose unknown frequency support occupies only a small portion of a wide spectrum. Our primary design goals are efficient hardware implementation and low computational load on the supporting digital processing. We propose a system, named the modulated wideband converter, which first multiplies the analog signal by a bank of periodic waveforms. The product is then lowpass filtered and sampled uniformly at a low rate, which is orders of magnitude smaller than Nyquist. Perfect recovery from the proposed samples is achieved under certain necessary and sufficient conditions. We also develop a digital architecture, which allows either reconstruction of the analog input, or processing of any band of interest at a low rate, that is, without interpolating to the high Nyquist rate. Numerical simulations demonstrate many engineering aspects: robustness to noise and mismodeling, potential hardware simplifications, realtime performance for signals with time-varying support and stability to quantization effects. We compare our system with two previous approaches: periodic nonuniform sampling, which is bandwidth limited by existing hardware devices, and the random demodulator, which is restricted to discrete multitone signals and has a high computational load. In the broader context of Nyquist sampling, our scheme has the potential to break through the bandwidth barrier of state-of-the-art analog conversion technologies such as interleaved converters.
We proposed and demonstrated an optical pulse sampling method for photonic blind source separation. It can separate large bandwidth of mixed signals by small sampling frequency, which can reduce the workload of digital signal processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا