ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-FR: A Multi-Objective Optimization Method for Achieving Two-sided Fairness in E-commerce Recommendation

85   0   0.0 ( 0 )
 نشر من قبل Haolun Wu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-sided marketplaces are an important component of many existing Internet services like Airbnb and Amazon, which have both consumers (e.g. users) and producers (e.g. retailers). Traditionally, the recommendation system in these platforms mainly focuses on maximizing customer satisfaction by recommending the most relevant items based on the learned user preference. However, it has been shown in previous works that solely optimizing the satisfaction of customers may lead to unfair exposure of items, which jeopardizes the benefits of producers. To tackle this problem, we propose a fairness-aware recommendation framework by using multi-objective optimization, Multi-FR, to adaptively balance the objectives between consumers and producers. In particular, Multi-FR adopts the multi-gradient descent to generate a Pareto set of solutions, where the most appropriate one is selected from the Pareto set. In addition, four fairness metrics/constraints are applied to make the recommendation results on both the consumer and producer side fair. We extensively evaluate our model on three real-world datasets, comparing with grid-search methods and using a variety of performance metrics. The experimental results demonstrate that Multi-FR can improve the recommendation fairness on both the consumer and producer side with little drop in recommendation quality, also outperforming several state-of-the-art fair ranking approaches.



قيم البحث

اقرأ أيضاً

Significant development of communication technology over the past few years has motivated research in multi-modal summarization techniques. A majority of the previous works on multi-modal summarization focus on text and images. In this paper, we prop ose a novel extractive multi-objective optimization based model to produce a multi-modal summary containing text, images, and videos. Important objectives such as intra-modality salience, cross-modal redundancy and cross-modal similarity are optimized simultaneously in a multi-objective optimization framework to produce effective multi-modal output. The proposed model has been evaluated separately for different modalities, and has been found to perform better than state-of-the-art approaches.
125 - Daqing Wu , Xiao Luo , Zeyu Ma 2021
Nowadays, E-commerce is increasingly integrated into our daily lives. Meanwhile, shopping process has also changed incrementally from one behavior (purchase) to multiple behaviors (such as view, carting and purchase). Therefore, utilizing interaction data of auxiliary behavior data draws a lot of attention in the E-commerce recommender systems. However, all existing models ignore two kinds of intrinsic heterogeneity which are helpful to capture the difference of user preferences and the difference of item attributes. First (intra-heterogeneity), each user has multiple social identities with otherness, and these different identities can result in quite different interaction preferences. Second (inter-heterogeneity), each item can transfer an item-specific percentage of score from low-level behavior to high-level behavior for the gradual relationship among multiple behaviors. Thus, the lack of consideration of these heterogeneities damages recommendation rank performance. To model the above heterogeneities, we propose a novel method named intra- and inter-heterogeneity recommendation model (ARGO). Specifically, we embed each user into multiple vectors representing the users identities, and the maximum of identity scores indicates the interaction preference. Besides, we regard the item-specific transition percentage as trainable transition probability between different behaviors. Extensive experiments on two real-world datasets show that ARGO performs much better than the state-of-the-art in multi-behavior scenarios.
Category recommendation for users on an e-Commerce platform is an important task as it dictates the flow of traffic through the website. It is therefore important to surface precise and diverse category recommendations to aid the users journey throug h the platform and to help them discover new groups of items. An often understated part in category recommendation is users proclivity to repeat purchases. The structure of this temporal behavior can be harvested for better category recommendations and in this work, we attempt to harness this through variational inference. Further, to enhance the variational inference based optimization, we initialize the optimizer at better starting points through the well known Metapath2Vec algorithm. We demonstrate our results on two real-world datasets and show that our model outperforms standard baseline methods.
Building a recommendation system that serves billions of users on daily basis is a challenging problem, as the system needs to make astronomical number of predictions per second based on real-time user behaviors with O(1) time complexity. Such kind o f large scale recommendation systems usually rely heavily on pre-built index of products to speedup the recommendation service so that online user waiting time is un-noticeable. One important indexing structure is the product-product index, where one can retrieval a list of ranked products given a seed product. The index can be viewed as a weighted product-product graph. In this paper, we present our novel technologies to efficiently build such kind of indexed product graphs. In particular, we propose the Swing algorithm to capture the substitute relationships between products, which can utilize the substructures of user-item click bi-partitive graph. Then we propose the Surprise algorithm for the modeling of complementary product relationships, which utilizes product category information and solves the sparsity problem of user co-purchasing graph via clustering technique. Base on these two approaches, we can build the basis product graph for recommendation in Taobao. The approaches are evaluated comprehensively with both offline and online experiments, and the results demonstrate the effectiveness and efficiency of the work.
Different from shopping at retail stores, consumers on e-commerce platforms usually cannot touch or try products before purchasing, which means that they have to make decisions when they are uncertain about the outcome (e.g., satisfaction level) of p urchasing a product. To study peoples preferences, economics researchers have proposed the hypothesis of Expected Utility (EU) that models the subject value associated with an individuals choice as the statistical expectations of that individuals valuations of the outcomes of this choice. Despite its success in studies of game theory and decision theory, the effectiveness of EU, however, is mostly unknown in e-commerce recommendation systems. Previous research on e-commerce recommendation interprets the utility of purchase decisions either as a function of the consumed quantity of the product or as the gain of sellers/buyers in the monetary sense. As most consumers just purchase one unit of a product at a time and most alternatives have similar prices, such modeling of purchase utility is likely to be inaccurate in practice. In this paper, we interpret purchase utility as the satisfaction level a consumer gets from a product and propose a recommendation framework using EU to model consumers behavioral patterns. We assume that consumer estimates the expected utilities of all the alternatives and choose products with maximum expected utility for each purchase. To deal with the potential psychological biases of each consumer, we introduce the usage of Probability Weight Function (PWF) and design our algorithm based on Weighted Expected Utility (WEU). Empirical study on real-world e-commerce datasets shows that our proposed ranking-based recommendation framework achieves statistically significant improvement against both classical Collaborative Filtering/Latent Factor Models and state-of-the-art deep models in top-K recommendation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا