ترغب بنشر مسار تعليمي؟ اضغط هنا

Fundamental weight systems are quantum states

387   0   0.0 ( 0 )
 نشر من قبل Urs Schreiber
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Weight systems on chord diagrams play a central role in knot theory and Chern-Simons theory; and more recently in stringy quantum gravity. We highlight that the noncommutative algebra of horizontal chord diagrams is canonically a star-algebra, and ask which weight systems are positive with respect to this structure; hence we ask: Which weight systems are quantum states, if horizontal chord diagrams are quantum observables? We observe that the fundamental gl(n)-weight systems on horizontal chord diagrams with N strands may be identified with the Cayley distance kernel at inverse temperature beta=ln(n) on the symmetric group on N elements. In contrast to related kernels like the Mallows kernel, the positivity of the Cayley distance kernel had remained open. We characterize its phases of indefinite, semi-definite and definite positivity, in dependence of the inverse temperature beta; and we prove that the Cayley distance kernel is positive (semi-)definite at beta=ln(n) for all n=1,2,3,... In particular, this proves that all fundamental gl(n)-weight systems are quantum states, and hence so are all their convex combinations. We close with briefly recalling how, under our Hypothesis H, this result impacts on the identification of bound states of multiple M5-branes.



قيم البحث

اقرأ أيضاً

We study the relations between solitons of nonlinear Schr{o}dinger equation described systems and eigen-states of linear Schr{o}dinger equation with some quantum wells. Many different non-degenerated solitons are re-derived from the eigen-states in t he quantum wells. We show that the vector solitons for coupled system with attractive interactions correspond to the identical eigen-states with the ones of coupled systems with repulsive interactions. The energy eigenvalues of them seem to be different, but they can be reduced to identical ones in the same quantum wells. The non-degenerated solitons for multi-component systems can be used to construct much abundant degenerated solitons in more components coupled cases. On the other hand, we demonstrate soliton solutions in nonlinear systems can be also used to solve the eigen-problems of quantum wells. As an example, we present eigenvalue and eigen-state in a complicated quantum well for which the Hamiltonian belongs to the non-Hermitian Hamiltonian having Parity-Time symmetry. We further present the ground state and the first exited state in an asymmetric quantum double-well from asymmetric solitons. Based on these results, we expect that many nonlinear physical systems can be used to observe the quantum states evolution of quantum wells, such as water wave tank, nonlinear fiber, Bose-Einstein condensate, and even plasma, although some of them are classical physical systems. These relations provide another different way to understand the stability of solitons in nonlinear Schr{o}dinger equation described systems, in contrast to the balance between dispersion and nonlinearity.
For an arbitrary positive integer $n$ and a pair $(p, q)$ of coprime integers, consider $n$ copies of a torus $(p,q)$ knot placed parallel to each other on the surface of the corresponding auxiliary torus: we call this assembly a torus $n$-link. We c ompute economical presentations of knot groups for torus links using the groupoid version of the Seifert--van Kampen theorem. Moreover, the result for an individual torus $n$-link is generalized to the case of multiple nested torus links, where we inductively include a torus link in the interior (or the exterior) of the auxiliary torus corresponding to the previous link. The results presented here have been useful in the physics context of classifying moduli space geometries of four-dimensional ${mathcal N}=2$ superconformal field theories.
After recalling different formulations of the definition of supersymmetric quantum mechanics given in the literature, we discuss the relationships between them in order to provide an answer to the question raised in the title.
We study the weighted heat trace asymptotics of an operator of Laplace type with Dirichlet boundary conditions where the weight function exhibits radial blowup. We give formulas for the first few terms in the expansion in terms of geometrical data.
We discuss the alternative algebraic structures on the manifold of quantum states arising from alternative Hermitian structures associated with quantum bi-Hamiltonian systems. We also consider the consequences at the level of the Heisenberg picture i n terms of deformations of the associative product on the space of observables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا