ﻻ يوجد ملخص باللغة العربية
Recently, Gnutzmann and Smilansky presented a formula for the bond scattering matrix of a graph with respect to a Hermitian matrix. We present another proof for this Gnutzmann and Smilanskys formula by a technique used in the zeta function of a graph. Furthermore, we generalize Gnutzmann and Smilanskys formula to a regular covering of a graph. Finally, we define an $L$-fuction of a graph, and present a determinant expression. As a corollary, we express the generalization of Gnutzmann and Smilanskys formula to a regular covering of a graph by using its $L$-functions.
We define a zeta function woth respect to the twisted Grover matrix of a mixed digraph, and present an exponential expression and a determinant expression of this zeta function. As an application, we give a trace formula with respect to the twisted Grover matrix of a mixed digraph.
This contribution gives an extensive study on spectra of mixed graphs via its Hermitian adjacency matrix of the second kind introduced by Mohar [21]. This matrix is indexed by the vertices of the mixed graph, and the entry corresponding to an arc fro
We carry out diagonalization of a $3times3$ Hermitian matrix of which Real component and Imaginary part are commutative and apply it to Majorana neutrino mass matrix $M=M_ u M_ u^dagger$ which satisfies the same condition. It is shown in a model-inde
Webs are planar graphs with boundary that describe morphisms in a diagrammatic representation category for $mathfrak{sl}_k$. They are studied extensively by knot theorists because braiding maps provide a categorical way to express link diagrams in te
We give a limit theorem with respect to the matrices related to non-backtracking paths of a regular graph. The limit obtained closely resembles the $k$th moments of the arcsine law. Furthermore, we obtain the asymptotics of the averages of the $p^m$t