ﻻ يوجد ملخص باللغة العربية
Understanding chiral induced spin-selectivity (CISS), resulting from charge transport through helical systems, has recently inspired many experimental and theoretical efforts, but is still object of intense debate. In order to assess the nature of CISS, we propose to focus on electron-transfer processes occurring at the single-molecule level. We design simple magnetic resonance experiments, exploiting a qubit as a highly sensitive and coherent magnetic sensor, to provide clear signatures of the acceptor polarization. Moreover, we show that information could even be obtained from time-resolved electron paramagnetic resonance experiments on a randomly-oriented solution of molecules. The proposed experiments will unveil the role of chiral linkers in electron-transfer and could also be exploited for quantum computing applications.
Chiral induced spin selectivity (CISS) describes efficient spin filtering by chiral molecules. This phenomenon has led to nanoscale manipulation of quantum spins with promising applications to spintronics and quantum computing, since its discovery ne
Organic materials are known to feature long spin-diffusion times, originating in a generally small spin-orbit coupling observed in these systems. From that perspective, chiral molecules acting as efficient spin selectors pose a puzzle, that attracted
A new method for detecting the magnetic resonance of electronic spins at low temperature is demonstrated. It consists in measuring the signal emitted by the spins with a superconducting qubit that acts as a single-microwave-photon detector, resulting
The theoretical explanation for the chiral-induced spin selectivity effect, in which electrons passage through a chiral system depends on their spin and the handedness of the system, remains vague. Although most experimental work was performed at roo
Magnetic resonance with ensembles of electron spins is nowadays performed in frequency ranges up to 240 GHz and in corresponding magnetic fields of up to 10 T. However, experiments with single electron and nuclear spins so far only reach into frequen