ترغب بنشر مسار تعليمي؟ اضغط هنا

Interplay between hysteresis and nonlocality during onset and arrest of flow in granular materials

155   0   0.0 ( 0 )
 نشر من قبل Saviz Mowlavi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The jamming transition in granular materials is well-known for exhibiting hysteresis, wherein the level of shear stress required to trigger flow is larger than that below which flow stops. Although such behavior is typically modeled as a simple non-monotonic flow rule, the rheology of granular materials is also nonlocal due to cooperativity at the grain scale, leading for instance to increased strengthening of the flow threshold as system size is reduced. We investigate how these two effects - hysteresis and nonlocality - couple with each other by incorporating non-monotonicity of the flow rule into the nonlocal granular fluidity (NGF) model, a nonlocal constitutive model for granular flows. By artificially tuning the strength of nonlocal diffusion, we demonstrate that both ingredients are key to explaining certain features of the hysteretic transition between flow and arrest. Finally, we assess the ability of the NGF model to quantitatively predict material behavior both around the transition and in the flowing regime, through stress-driven discrete element method (DEM) simulations of flow onset and arrest in various geometries. Along the way, we develop a new methodology to compare deterministic model predictions with the stochastic behavior exhibited by the DEM simulations around the jamming transition.



قيم البحث

اقرأ أيضاً

445 - Qing Xu , Ashish V. Orpe , 2007
We investigate the dynamics of a partially saturated grain-liquid mixture with a rotating drum apparatus. The drum is partially filled with the mixture and then rotated about its horizontal axis. We focus on the continous avalanching regime and measu re the impact of volume fraction and viscosity of the liquid on the dynamic surface angle. The inclination angle of the surface is observed to increase sharply to a peak and then decrease as a function of liquid volume fraction. The height of the peak is observed to increase with rotation rate. For higher liquid volume fractions, the inclination angle of the surface can decrease with viscosity before increasing. The viscosity where the minima occurs decreases with the rotation rate of the drum. Limited measurements of the flow depth were made, and these were observed to show only fractional changes with volume fraction and rotation speeds. We show that the qualitative features of our observations can be understood by analyzing the effect of lubrication forces on the timescale over which particles come in contact.
The nanostructure of two novel sulfur containing dimer materials has been investigated experimentally by hard and by resonant tender X-ray scattering techniques. On cooling the dimers through the nematic to twist-bend nematic (N-NTB) phase transition , the correlation length associated with short-range positional order drops, while the heliconical orientational order becomes more correlated. The heliconical pitch shows a stronger temperature dependence near the N-NTB transition than observed in previously studied dimers, such as the CBnCB series of compounds. We explain both this strong variation and the dependence of the heliconical pitch on the length of the spacer connecting the monomer units by taking into account a temperature dependent molecular bend and intermolecular overlap. and. The heliconical structure is observed even in the upper 3-4{deg}C range of the smectic phase that forms just below the NTB state. The coexistence of smectic layering and the heliconical order indicates a SmCTB -type phase where the rigid units of the dimers are tilted with respect to the layer normal in order to accommodate the bent conformation of the dimers, but the tilt direction rotates along the heliconical axis. This is potentially similar to the SmCTB phase reported by Abberley et al (Nat. Commun. 2018, 9, 228) below a SmA phase.
203 - B. Haffner , Y. Khidas , O. Pitois 2014
The drainage of particulate foams is studied under conditions where the particles are not trapped individually by constrictions of the interstitial pore space. The drainage velocity decreases continuously as the particle volume fraction $phi_{p}$ inc reases. The suspensions jam - and therefore drainage stops - for values $phi_{p}^{*}$ which reveal a strong effect of the particle size. In accounting for the particular geometry of the foam, we show that $phi_{p}^{*}$ accounts for unusual confinement effects when the particles pack into the foam network. We model quantitatively the overall behavior of the suspension - from flow to jamming - by taking into account explicitly the divergence of its effective viscosity at $phi_{p}^{*}$. Beyond the scope of drainage, the reported jamming transition is expected to have a deep significance for all aspects related to particulate foams, from aging to mechanical properties.
Evolution of the energy landscape during physical aging of glassy materials can be understood from the frequency and strain dependence of the shear modulus but the non-stationary nature of these systems frustrates investigation of their instantaneous underlying properties. Using a series of time dependent measurements we systematically reconstruct the frequency and strain dependence as a function of age for a repulsive colloidal glass undergoing structural arrest. In this manner, we are able to unambiguously observe the structural relaxation time, which increases exponentially with sample age at short times. The yield stress varies logarithmically with time in the arrested state, consistent with recent simulation results, whereas the yield strain is nearly constant in this regime. Strikingly, the frequency dependence at fixed times can be rescaled onto a master curve, implying a simple connection between the aging of the system and the change in the frequency dependent modulus.
We propose an explanation for the onset of oscillations seen in numerical simulations of dense, inclined flows of inelastic, frictional spheres. It is based on a phase transition between disordered and ordered collisional states that may be interrupt ed by the formation of force chains. Low frequency oscillations between ordered and disordered states take place over weakly bumpy bases; higher-frequency oscillations over strongly bumpy bases involve the formation of particle chains that extend to the base and interrupt the phase change. The predicted frequency and amplitude of the oscillations induced by the unstable part of the equation of state are similar to those seen in the simulations and they depend upon the contact stiffness in the same way. Such oscillations could be the source of sound produced by flowing sand.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا