ﻻ يوجد ملخص باللغة العربية
There is accelerating interest in developing memory devices using antiferromagnetic (AFM) materials, motivated by the possibility for electrically controlling AFM order via spin-orbit torques, and its read-out via magnetoresistive effects. Recent studies have shown, however, that high current densities create non-magnetic contributions to resistive switching signals in AFM/heavy metal (AFM/HM) bilayers, complicating their interpretation. Here we introduce an experimental protocol to unambiguously distinguish current-induced magnetic and nonmagnetic switching signals in AFM/HM structures, and demonstrate it in IrMn$_3$/Pt devices. A six-terminal double-cross device is constructed, with an IrMn$_3$ pillar placed on one cross. The differential voltage is measured between the two crosses with and without IrMn$_3$ after each switching attempt. For a wide range of current densities, reversible switching is observed only when write currents pass through the cross with the IrMn$_3$ pillar, eliminating any possibility of non-magnetic switching artifacts. Micromagnetic simulations support our findings, indicating a complex domain-mediated switching process.
Spin-transfer torque and current induced spin dynamics in spin-valve nanopillars with the free magnetic layer located between two magnetic films of fixed magnetic moments is considered theoretically. The spin-transfer torque in the limit of diffusive
Relativistic current induced torques and devices utilizing antiferromagnets have been independently considered as two promising new directions in spintronics research. Here we report electrical measurements of the torques in structures comprising a $
A normally incident light of linear polarization injects a pure spin current in a strip of 2-dimensional electron gas with spin-orbit coupling. We report observation of an electric current with a butterfly-like pattern induced by such a light shed on
Experimental results of rectification of a constant wave radio frequency (RF) current flowing in a single-layered ferromagnetic wire are presented. We show that a detailed external magnetic field dependence of the RF current induced a direct-current
Antiferromagnetic spintronic devices have the potential to outperform conventional ferromagnetic devices due to their ultrafast dynamics and high data density. A challenge in designing these devices is the control and detection of the orientation of