ترغب بنشر مسار تعليمي؟ اضغط هنا

Hilbert curve vs Hilbert space: exploiting fractal 2D covering to increase tensor network efficiency

146   0   0.0 ( 0 )
 نشر من قبل Simone Notarnicola
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel mapping for studying 2D many-body quantum systems by solving an effective, one-dimensional long-range model in place of the original two-dimensional short-range one. In particular, we address the problem of choosing an efficient mapping from the 2D lattice to a 1D chain that optimally preserves the locality of interactions within the TN structure. By using Matrix Product States (MPS) and Tree Tensor Network (TTN) algorithms, we compute the ground state of the 2D quantum Ising model in transverse field with lattice size up to $64times64$, comparing the results obtained from different mappings based on two space-filling curves, the snake curve and the Hilbert curve. We show that the locality-preserving properties of the Hilbert curve leads to a clear improvement of numerical precision, especially for large sizes, and turns out to provide the best performances for the simulation of 2D lattice systems via 1D TN structures.



قيم البحث

اقرأ أيضاً

The solution space of many classical optimization problems breaks up into clusters which are extensively distant from one another in the Hamming metric. Here, we show that an analogous quantum clustering phenomenon takes place in the ground state sub space of a certain quantum optimization problem. This involves extending the notion of clustering to Hilbert space, where the classical Hamming distance is not immediately useful. Quantum clusters correspond to macroscopically distinct subspaces of the full quantum ground state space which grow with the system size. We explicitly demonstrate that such clusters arise in the solution space of random quantum satisfiability (3-QSAT) at its satisfiability transition. We estimate both the number of these clusters and their internal entropy. The former are given by the number of hardcore dimer coverings of the core of the interaction graph, while the latter is related to the underconstrained degrees of freedom not touched by the dimers. We additionally provide new numerical evidence suggesting that the 3-QSAT satisfiability transition may coincide with the product satisfiability transition, which would imply the absence of an intermediate entangled satisfiable phase.
We study the dynamics of an interacting quantum spin chain under the application of a linearly increasing field. This model exhibits a type of localization known as Stark many-body localization. The dynamics shows a strong dependence on the initial c onditions, indicating that the system violates the conventional (strong) eigenstate thermalization hypothesis at any finite gradient of the field. This is contrary to reports of a numerically observed ergodic phase. Therefore, the localization is crucially distinct from disorder-driven many-body localization, in agreement with recent predictions on the basis of localization via Hilbert-space shattering.
Fracton systems exhibit restricted mobility of their excitations due to the presence of higher-order conservation laws. Here we study the time evolution of a one-dimensional fracton system with charge and dipole moment conservation using a random uni tary circuit description. Previous work has shown that when the random unitary operators act on four or more sites, an arbitrary initial state eventually thermalizes via a universal subdiffusive dynamics. In contrast, a system evolving under three-site gates fails to thermalize due to strong fragmentation of the Hilbert space. Here we show that three-site gate dynamics causes a given initial state to evolve toward a highly nonthermal state on a time scale consistent with Brownian diffusion. Strikingly, the dynamics produces an effective attraction between isolated fractons or between a single fracton and the boundaries of the system, in analogy with the Casimir effect in quantum electrodynamics. We show how this attraction can be understood by exact mapping to a simple classical statistical mechanics problem, which we solve exactly for the case of an initial state with either one or two fractons.
Given a set of correlations originating from measurements on a quantum state of unknown Hilbert space dimension, what is the minimal dimension d necessary to describes such correlations? We introduce the concept of dimension witness to put lower boun ds on d. This work represents a first step in a broader research program aiming to characterize Hilbert space dimension in various contexts related to fundamental questions and Quantum Information applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا