ﻻ يوجد ملخص باللغة العربية
Context. Infrared spectroscopy of star and planet forming regions is at the dawn of a new age with the upcoming James Webb Space Telescope. In support of these observations, laboratory spectra are required to identify complex organic molecules in the ices that cover the dust grains in these regions. Aims. This study aims to provide reference spectra to firmly detect icy methyl formate in the different stages of star and planet forming regions. Methyl formate is mixed in astronomically relevant matrices, and the peak positions, FWHMs, and relative band intensities are characterized for different temperatures to provide an analytical tool for astronomers. Methods. Methyl formate is deposited at 15 K under high-vacuum conditions. Specifically, methyl formate is deposited pure and mixed with CO, H$_2$CO, CH$_3$OH, H$_2$O, and CO:H$_2$CO:CH$_3$OH combined. Throughout the experiment infrared spectra are acquired with a FTIR spectrometer in the range from 4000-500 cm$^{-1}$ (2.5-20 $mu$m) at a spectral resolution of 0.5 cm$^{-1}$. Results. We present the characterization of five solid-state methyl formate vibrational modes in pure and astronomically relevant ice matrices. The five selected vibrational modes, namely the C=O stretch, C$-$O stretch, CH$_3$ rocking, O$-$CH$_3$ stretching, and OCO deformation, are best suited for a JWST identification of methyl formate. For each of these vibrational modes, and each of the mixtures the TvS heatmaps, peak position versus FWHM, and relative band intensities are given. Additionally, the acquired reference spectra of methyl formate are compared with Spitzer observations of HH 46. A tentative detection of methyl formate provides an upper limit to the column density of $1.7times10^{17}$ cm$^{-2}$, corresponding to an upper limit relative to water of $leq 2.2%$ and $leq 40%$ with respect to methanol.
High deuterium fractionation is observed in various types of environment such as prestellar cores, hot cores and hot corinos. It has proven to be an efficient probe to study the physical and chemical conditions of these environments. The study of the
Since the start of ALMA observatory operation, new and important chemistry of infrared cold core was revealed. Molecular transitions at millimeter range are being used to identify and to characterize these sources. We have investigated the 231 GHz AL
The rotational spectrum of the higher-energy trans conformational isomer of methyl formate has been assigned for the first time using several pulsed-jet Fourier transform microwave spectrometers in the 6-60 GHz frequency range. This species has also
Millimeter and centimeter observations are discovering an increasing number of interstellar complex organic molecules (iCOMs) in a large variety of star forming sites, from the earliest stages of star formation to protoplanetary disks and in comets.
Complex organic molecules (COMs), which are the seeds of prebiotic material and precursors of amino acids and sugars, form in the icy mantles of circumstellar dust grains but cannot be detected remotely unless they are heated and released to the gas