ترغب بنشر مسار تعليمي؟ اضغط هنا

Managing Blockchain Systems and Applications: A Process Model for Blockchain Configurations

143   0   0.0 ( 0 )
 نشر من قبل Olga Labazova
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Olga Labazova




اسأل ChatGPT حول البحث

Blockchain is a radical innovation with a unique value proposition that shifts trust from institutions to algorithms. Still, the potential of blockchains remains elusive due to knowledge gaps between computer science research and socio-economic research. Building on information technology governance literature and the theory of coevolution, this study develops a process model for blockchain configurations that captures blockchain capability dimensions and application areas. We demonstrate the applicability of the proposed blockchain configuration process model on four blockchain projects. The proposed blockchain configuration process model assists with the selection and configuration of blockchain systems based on a set of known requirements for a blockchain project. Our findings contribute to research by bridging knowledge gaps between computer science and socio-economic research on blockchain. Specifically, we explore existing blockchain concepts and integrate them in a process model for blockchain configurations.



قيم البحث

اقرأ أيضاً

Cyberphysical Systems (CPS) are transforming the way we interact with the physical world around us. However, centralised approaches for CPS systems are not capable of addressing the unique challenges of CPS due to the complexity, constraints, and dyn amic nature of the interactions. To realize the true potential of CPS, a decentralized approach that takes into account these unique features is required. Recently, blockchain-based solutions have been proposed to address CPS challenges.Yet, applying blockchain for diverse CPS domains is not straight-forward and has its own challenges. In this paper, we share our experiences in applying blockchain technology for CPS to provide insights and highlight the challenges and future opportunities.
In this paper, we develop a more general framework of block-structured Markov processes in the queueing study of blockchain systems, which can provide analysis both for the stationary performance measures and for the sojourn times of any transaction and block. Note that an original aim of this paper is to generalize the two-stage batch-service queueing model studied in Li et al. cite{Li:2018} both ``from exponential to phase-type service times and ``from Poisson to MAP transaction arrivals. In general, the MAP transaction arrivals and the two stages of PH service times make our blockchain queue more suitable to various practical conditions of blockchain systems with crucial random factors, for example, the mining processes, the block-generations, the blockchain-building and so forth. For such a more general blockchain queueing model, we focus on two basic research aspects: (1) By using the matrix-geometric solution, we first obtain a sufficient stable condition of the blockchain system. Then we provide simple expressions for the average number of transactions in the queueing waiting room, and the average number of transactions in the block. (2) However, comparing with Li et al. cite{Li:2018}, analysis of the transaction-confirmation time becomes very difficult and challenging due to the complicated blockchain structure. To overcome the difficulties, we develop a computational technique of the first passage times by means of both the PH distributions of infinite sizes and the $RG$-factorizations. Finally, we hope that the methodology and results given in this paper will open a new avenue to queueing analysis of more general blockchain systems in practice, and can motivate a series of promising future research on development of lockchain technologies.
166 - Bin Cao , Zixin Wang , Long Zhang 2021
In the past decade, blockchain has shown a promising vision greatly to build the trust without any powerful third party in a secure, decentralized and salable manner. However, due to the wide application and future development from cryptocurrency to Internet of Things, blockchain is an extremely complex system enabling integration with mathematics, finance, computer science, communication and network engineering, etc. As a result, it is a challenge for engineer, expert and researcher to fully understand the blockchain process in a systematic view from top to down. First, this article introduces how blockchain works, the research activity and challenge, and illustrates the roadmap involving the classic methodology with typical blockchain use cases and topics. Second, in blockchain system, how to adopt stochastic process, game theory, optimization, machine learning and cryptography to study blockchain running process and design blockchain protocol/algorithm are discussed in details. Moreover, the advantage and limitation using these methods are also summarized as the guide of future work to further considered. Finally, some remaining problems from technical, commercial and political views are discussed as the open issues. The main findings of this article will provide an overview in a methodology perspective to study theoretical model for blockchain fundamentals understanding, design network service for blockchain-based mechanisms and algorithms, as well as apply blockchain for Internet of Things, etc.
Blockchain technology has rapidly evolved from an enabling technology for cryptocurrencies to a potential solution to a wider range of problems found in data-centric and distributed systems. Interest in this area has encouraged many recent innovation s to address challenges that traditional approaches of design have been unable to meet. Healthcare Information Systems with issues around privacy, interoperability, data integrity, and access control is potentially an area where blockchain technology may have a significant impact. Blockchain, however, is a meta-technology, combining multiple techniques, as it is often important to determine how best to separate concerns in the design and implementation of such systems. This paper proposes a layered approach for the organization of blockchain in healthcare applications. Key issues driving the adoption of this technology are explored. A model presenting the points in each layer is explored. Finally, we present an example of how the perspective we describe can improve the development of Health Information Systems.
Transactive Energy Systems (TES) are modern mechanisms in electric power systems that allow disparate control agents to utilize distributed generation units (DGs) to engage in energy transactions and provide ancillary services to the grid. Although v oltage regulation is a crucial ancillary service within active distribution networks (ADNs), previous work has not adequately explored how this service can be offered in terms of its incentivization, contract auditability and enforcement. Blockchain technology shows promise in being a key enabler of TES, allowing agents to engage in trustless, persistent transactions that are both enforceable and auditable. To that end, this paper proposes a blockchain based TES that enables agents to receive incentives for providing voltage regulation services by i) maintaining an auditable reputation rating for each agent that is increased proportionately with each mitigation of a voltage violation, ii) utilizing smart contracts to enforce the validity of each transaction and penalize reputation ratings in case of a mitigation failure and iii) automating the negotiation and bidding of agent services by implementing the contract net protocol (CNP) as a smart contract. Experimental results on both simulated and real-world ADNs are executed to demonstrate the efficacy of the proposed system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا