ﻻ يوجد ملخص باللغة العربية
Important advances have recently been achieved in developing procedures yielding uniformly valid inference for a low dimensional causal parameter when high-dimensional nuisance models must be estimated. In this paper, we review the literature on uniformly valid causal inference and discuss the costs and benefits of using uniformly valid inference procedures. Naive estimation strategies based on regularisation, machine learning, or a preliminary model selection stage for the nuisance models have finite sample distributions which are badly approximated by their asymptotic distributions. To solve this serious problem, estimators which converge uniformly in distribution over a class of data generating mechanisms have been proposed in the literature. In order to obtain uniformly valid results in high-dimensional situations, sparsity conditions for the nuisance models need typically to be made, although a double robustness property holds, whereby if one of the nuisance model is more sparse, the other nuisance model is allowed to be less sparse. While uniformly valid inference is a highly desirable property, uniformly valid procedures pay a high price in terms of inflated variability. Our discussion of this dilemma is illustrated by the study of a double-selection outcome regression estimator, which we show is uniformly asymptotically unbiased, but is less variable than uniformly valid estimators in the numerical experiments conducted.
Distance correlation has become an increasingly popular tool for detecting the nonlinear dependence between a pair of potentially high-dimensional random vectors. Most existing works have explored its asymptotic distributions under the null hypothesi
We consider the problem of constructing nonparametric undirected graphical models for high-dimensional functional data. Most existing statistical methods in this context assume either a Gaussian distribution on the vertices or linear conditional mean
Statistical methods with empirical likelihood (EL) are appealing and effective especially in conjunction with estimating equations through which useful data information can be adaptively and flexibly incorporated. It is also known in the literature t
The infinite-dimensional Hilbert sphere $S^infty$ has been widely employed to model density functions and shapes, extending the finite-dimensional counterpart. We consider the Frechet mean as an intrinsic summary of the central tendency of data lying
Instrumental variable methods provide a powerful approach to estimating causal effects in the presence of unobserved confounding. But a key challenge when applying them is the reliance on untestable exclusion assumptions that rule out any relationshi