Accurate Prediction of Free Solvation Energy of Organic Molecules via Graph Attention Network and Message Passing Neural Network from Pairwise Atomistic Interactions


الملخص بالإنكليزية

Deep learning based methods have been widely applied to predict various kinds of molecular properties in the pharmaceutical industry with increasingly more success. Solvation free energy is an important index in the field of organic synthesis, medicinal chemistry, drug delivery, and biological processes. However, accurate solvation free energy determination is a time-consuming experimental process. Furthermore, it could be useful to assess solvation free energy in the absence of a physical sample. In this study, we propose two novel models for the problem of free solvation energy predictions, based on the Graph Neural Network (GNN) architectures: Message Passing Neural Network (MPNN) and Graph Attention Network (GAT). GNNs are capable of summarizing the predictive information of a molecule as low-dimensional features directly from its graph structure without relying on an extensive amount of intra-molecular descriptors. As a result, these models are capable of making accurate predictions of the molecular properties without the time consuming process of running an experiment on each molecule. We show that our proposed models outperform all quantum mechanical and molecular dynamics methods in addition to existing alternative machine learning based approaches in the task of solvation free energy prediction. We believe such promising predictive models will be applicable to enhancing the efficiency of the screening of drug molecules and be a useful tool to promote the development of molecular pharmaceutics.

تحميل البحث