ﻻ يوجد ملخص باللغة العربية
The resolution of optical imaging devices is ultimately limited by the diffraction of light. To circumvent this limit, modern super-resolution microscopy techniques employ active interaction with the object by exploiting its optical nonlinearities, nonclassical properties of the illumination beam, or near-field probing. Thus, they are not applicable whenever such interaction is not possible, for example, in astronomy or non-invasive biological imaging. Far-field, linear-optical super-resolution techniques based on passive analysis of light coming from the object would cover these gaps. In this paper, we present the first proof-of-principle demonstration of such a technique. It works by accessing information about spatial correlations of the image optical field and, hence, about the object itself via measuring projections onto Hermite-Gaussian transverse spatial modes. With a basis of 21 spatial modes in both transverse dimensions, we perform two-dimensional imaging with twofold resolution enhancement beyond the diffraction limit.
Abbes resolution limit, one of the best-known physical limitations, poses a great challenge for any wave systems in imaging, wave transport, and dynamics. Originally formulated in linear optics, this Abbes limit can be broken using nonlinear optical
Raman microscopy is a valuable tool for detecting physical and chemical properties of a sample material. When probing nanomaterials or nanocomposites the spatial resolution of Raman microscopy is not always adequate as it is limited by the optical di
The Rayleigh limit has so far applied to all microscopy techniques that rely on linear optical interaction and detection in the far field. Here we demonstrate that detecting the light emitted by an object in higher-order transverse electromagnetic mo
We report an experimental demonstration of a nonclassical imaging mechanism with super-resolving power beyond the Rayleigh limit. When the classical image is completely blurred out due to the use of a small imaging lens, by taking advantage of the in
It has been shown that negative refraction makes a perfect lens. However, with little loss, the imaging functionality will be strongly compromised. Later on, it was proved that positive refraction from Maxwells fish-eye lens can also makes a perfect