ﻻ يوجد ملخص باللغة العربية
We present gravitational-arc tomography of the cool-warm enriched circumgalactic medium (CGM) of an isolated galaxy (``G1) at $z approx 0.77$. Combining VLT/MUSE adaptive-optics and Magellan/MagE echelle spectroscopy we obtain partially-resolved kinematics of MgII in absorption and [OII] in emission. The unique arc configuration allows us to probe 42 spatially independent arc positions transverse to G1, plus 4 positions in front of it. The transverse positions cover G1s minor and major axes at impact parameters of $approx 10-30$ kpc and $approx 60$ kpc, respectively. We observe a direct kinematic connection between the cool-warm enriched CGM (traced by MgII) and the interstellar medium (traced by [OII]). This provides strong evidence for the existence of an extended disc that co-rotates with the galaxy out to tens of kiloparsecs. The MgII velocity dispersion ($sigma approx 30-100$ km s$^{-1}$, depending on position) is of the same order as the modeled galaxy rotational velocity ($v_{rm rot} approx 80$ km s$^{-1}$), providing evidence for the presence of a turbulent and pressure-supported CGM component. We regard the absorption to be modulated by a galactic-scale outflow, as it offers a natural scenario for the observed line-of-sight dispersion and asymmetric profiles observed against both the arcs and the galaxy. An extended enriched co-rotating disc together with the signatures of a galactic outflow, are telltale signs of metal recycling in the $zsim 1$ CGM.
In this paper we present Multi Unit Spectroscopic Explorer (MUSE) integral field unit spectroscopic observations of the $sim70times30$ kpc$^2$ Ly$alpha$ halo around the radio galaxy 4C04.11 at $z = 4.5077$. High-redshift radio galaxies (HzRGs) are ho
We report the serendipitous detection of a 0.2 L$^*$, Lyman-$alpha$ emitting galaxy at redshift 2.5 at an impact parameter of 50 kpc from a bright background QSO sightline. A high-resolution spectrum of the QSO reveals a partial Lyman-limit absorptio
The majority of baryons reside beyond the optical extent of a galaxy in the circumgalactic and intergalactic media (CGM/IGM). Gaseous halos are inextricably linked to the appearance of their host galaxies through a complex story of accretion, feedbac
We present spatially-resolved echelle spectroscopy of an intervening MgII-FeII-MgI absorption-line system detected at $z_{rm abs}=0.73379$ toward the giant gravitational arc PSZ1 G311.65-18.48. The absorbing gas is associated to an inclined disk-like
In our current galaxy formation paradigm, high-redshift galaxies are predominantly fuelled by accretion of cool, metal-poor gas from the intergalactic medium. Hydrodynamical simulations predict that this material should be observable in absorption ag