ﻻ يوجد ملخص باللغة العربية
Light transport in a disordered ensemble of resonant atoms placed in a waveguide is found to be very sensitive to the sizes of cross section of a waveguide. Based on self-consistent quantum microscopic model treating atoms as coherent radiating dipoles, we have shown that the nature of radiation transfer changes from Anderson localization regime in a single-mode waveguide to a traditional diffuse transfer in a multi-mode one. Moreover, the transmittance magnitude undergoes complex step-like dependence on the transverse sizes of a waveguide.
We explore the potential of a static electric field to induce Anderson localization of light in a large three-dimensional (3D) cloud of randomly distributed, immobile atoms with a degenerate ground state (total angular momentum $J_g = 0$) and a three
Alkali-metal-vapor magnetometers, using coherent precession of polarized atomic spins for magnetic field measurement, have become one of the most sensitive magnetic field detectors. Their application areas range from practical uses such as detections
The coupling of atomic arrays and one-dimensional subwavelength waveguides gives rise to in- teresting photon transport properties, such as recent experimental demonstrations of large Bragg reflection and paves the way for a variety of potential appl
We demonstrate that a weak disorder in atomic positions introduces spatially localized optical modes in a dense three-dimensional ensemble of immobile two-level atoms arranged in a diamond lattice and coupled by the electromagnetic field. The frequen
Access to the electron spin is at the heart of many protocols for integrated and distributed quantum-information processing [1-4]. For instance, interfacing the spin-state of an electron and a photon can be utilized to perform quantum gates between p