ﻻ يوجد ملخص باللغة العربية
We consider the single eigenvalue fluctuations of random matrices of general Wigner-type, under a one-cut assumption on the density of states. For eigenvalues in the bulk, we prove that the asymptotic fluctuations of a single eigenvalue around its classical location are Gaussian with a universal variance which agrees with the GOE and GUE cases. Our method is based on a dynamical approach to mesoscopic linear spectral statistics which reduces their behavior on short scales to that on larger scales. We prove a central limit theorem for linear spectral statistics on larger scales via resolvent techniques and show that for certain classes of test functions, the leading order contribution to the variance is universal, agreeing with the GOE/GUE cases.
We prove that the energy of any eigenvector of a sum of several independent large Wigner matrices is equally distributed among these matrices with very high precision. This shows a particularly strong microcanonical form of the equipartition prin
By the Moutard transformation method we construct two-dimensional Schrodinger operators with real smooth potential decaying at infinity and with a multiple positive eigenvalue. These potentials are rational functions of spatial variables and their sines and cosines.
This is an elementary review, aimed at non-specialists, of results that have been obtained for the limiting distribution of eigenvalues and for the operator norms of real symmetric random matrices via the method of moments. This method goes back to a
The eigenvalues of the matrix structure $X + X^{(0)}$, where $X$ is a random Gaussian Hermitian matrix and $X^{(0)}$ is non-random or random independent of $X$, are closely related to Dyson Brownian motion. Previous works have shown how an infinite h
We compare the Ornstein-Uhlenbeck process for the Gaussian Unitary Ensemble to its non-hermitian counterpart - for the complex Ginibre ensemble. We exploit the mathematical framework based on the generalized Greens functions, which involves a new, hi