ﻻ يوجد ملخص باللغة العربية
Detecting pedestrians is a crucial task in autonomous driving systems to ensure the safety of drivers and pedestrians. The technologies involved in these algorithms must be precise and reliable, regardless of environment conditions. Relying solely on RGB cameras may not be enough to recognize road environments in situations where cameras cannot capture scenes properly. Some approaches aim to compensate for these limitations by combining RGB cameras with TOF sensors, such as LIDARs. However, there are few works that address this problem using exclusively the 3D geometric information provided by LIDARs. In this paper, we propose a PointNet++ based architecture to detect pedestrians in dense 3D point clouds. The aim is to explore the potential contribution of geometric information alone in pedestrian detection systems. We also present a semi-automatic labeling system that transfers pedestrian and non-pedestrian labels from RGB images onto the 3D domain. The fact that our datasets have RGB registered with point clouds enables label transferring by back projection from 2D bounding boxes to point clouds, with only a light manual supervision to validate results. We train PointNet++ with the geometry of the resulting 3D labelled clusters. The evaluation confirms the effectiveness of the proposed method, yielding precision and recall values around 98%.
Breast cancer is the most common cancer in women worldwide. The most common screening technology is mammography. To reduce the cost and workload of radiologists, we propose a computer aided detection approach for classifying and localizing calcificat
Currently, existing state-of-the-art 3D object detectors are in two-stage paradigm. These methods typically comprise two steps: 1) Utilize region proposal network to propose a fraction of high-quality proposals in a bottom-up fashion. 2) Resize and p
A crucial task in scene understanding is 3D object detection, which aims to detect and localize the 3D bounding boxes of objects belonging to specific classes. Existing 3D object detectors heavily rely on annotated 3D bounding boxes during training,
Prostate cancer is one of the most common forms of cancer and the third leading cause of cancer death in North America. As an integrated part of computer-aided detection (CAD) tools, diffusion-weighted magnetic resonance imaging (DWI) has been intens
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve v