ترغب بنشر مسار تعليمي؟ اضغط هنا

THOR: An Algorithm for Cadence-Independent Asteroid Discovery

65   0   0.0 ( 0 )
 نشر من قبل Joachim Moeyens
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Tracklet-less Heliocentric Orbit Recovery (THOR), an algorithm for linking of observations of Solar System objects across multiple epochs that does not require intra-night tracklets or a predefined cadence of observations within a search window. By sparsely covering regions of interest in the phase space with test orbits, transforming nearby observations over a few nights into the co-rotating frame of the test orbit at each epoch, and then performing a generalized Hough transform on the transformed detections followed by orbit determination (OD) filtering, candidate clusters of observations belonging to the same objects can be recovered at moderate computational cost and little to no constraints on cadence. We validate the effectiveness of this approach by running on simulations as well as on real data from the Zwicky Transient Facility (ZTF). Applied to a short, 2-week, slice of ZTF observations, we demonstrate THOR can recover 97.4% of all previously known and discoverable objects in the targeted ($a > 1.7$ au) population with 5 or more observations and with purity between 97.7% and 100%. This includes 10 likely new discoveries, and a recovery of an $e sim 1$ comet C/2018 U1 (the comet would have been a ZTF discovery had THOR been running in 2018 when the data were taken). The THOR package and demo Jupyter notebooks are open source and available at https://github.com/moeyensj/thor.



قيم البحث

اقرأ أيضاً

Photometric observations of planetary transits may show localized bumps, called transit anomalies, due to the possible crossing of photospheric starspots. The aim of this work is to analyze the transit anomalies and derive the temperature profile ins ide the transit belt along the transit direction. We develop the algorithm TOSC, a tomographic inverse-approach tool which, by means of simple algebra, reconstructs the flux distribution along the transit belt. We test TOSC against some simulated scenarios. We find that TOSC provides robust results for light curves with photometric accuracies better than 1~mmag, returning the spot-photosphere temperature contrast with an accuracy better than 100~K. TOSC is also robust against the presence of unocculted spots, provided that the apparent planetary radius given by the fit of the transit light curve is used in place of the true radius. The analysis of real data with TOSC returns results consistent with previous studies.
A moon or natural satellite is a celestial body that orbits a planetary body such as a planet, dwarf planet, or an asteroid. Scientists seek understanding the origin and evolution of our solar system by studying moons of these bodies. Additionally, s earches for satellites of planetary bodies can be important to protect the safety of a spacecraft as it approaches or orbits a planetary body. If a satellite of a celestial body is found, the mass of that body can also be calculated once its orbit is determined. Ensuring the Dawn spacecrafts safety on its mission to the asteroid (4) Vesta primarily motivated the work of Dawns Satellite Working Group (SWG) in summer of 2011. Dawn mission scientists and engineers utilized various computational tools and techniques for Vestas satellite search. The objectives of this paper are to 1) introduce the natural satellite search problem, 2) present the computational challenges, approaches, and tools used when addressing this problem, and 3) describe applications of various image processing and computational algorithms for performing satellite searches to the electronic imaging and computer science community. Furthermore, we hope that this communication would enable Dawn mission scientists to improve their satellite search algorithms and tools and be better prepared for performing the same investigation in 2015, when the spacecraft is scheduled to approach and orbit the dwarf planet (1) Ceres.
This paper considers a new method for the binary asteroid orbit determination problem. The method is based on the Bayesian approach with a global optimisation algorithm. The orbital parameters to be determined are modelled through an a posteriori dis tribution made of a priori and likelihood terms. The first term constrains the parameters space and it allows the introduction of available knowledge about the orbit. The second term is based on given observations and it allows us to use and compare different observational error models. Once the a posteriori model is built, the estimator of the orbital parameters is computed using a global optimisation procedure: the simulated annealing algorithm. The maximum a posteriori (MAP) techniques are verified using simulated and real data. The obtained results validate the proposed method. The new approach guarantees independence of the initial parameters estimation and theoretical convergence towards the global optimisation solution. It is particularly useful in these situations, whenever a good initial orbit estimation is difficult to get, whenever observations are not well-sampled, and whenever the statistical behaviour of the observational errors cannot be stated Gaussian like.
Linking a coronagraph instrument to a spectrograph via a single mode optical fiber is a pathway towards detailed characterization of exoplanet atmospheres with current and future ground- and space-based telescopes. However, given the extreme brightne ss ratio and small angular separation between planets and their host stars, the planet signal-to-noise ratio will likely be limited by the unwanted coupling of starlight into the fiber. To address this issue, we utilize a wavefront control loop and a deformable mirror to systematically reject starlight from the fiber by measuring what is transmitted through the fiber. The wavefront control algorithm is based on the formalism of electric field conjugation (EFC), which in our case accounts for the spatial mode selectivity of the fiber. This is achieved by using a control output that is the overlap integral of the electric field with the fundamental mode of a single mode fiber. This quantity can be estimated by pair-wise image plane probes injected using a deformable mirror. We present simulation and laboratory results that demonstrate our approach offers a significant improvement in starlight suppression through the fiber relative to a conventional EFC controller. With our experimental setup, which provides an initial normalized intensity of $3times10^{-4}$ in the fiber at an angular separation of $4lambda/D$, we obtain a final normalized intensity of $3times 10^{-6}$ in monochromatic light at $lambda=635$~nm through the fiber (100x suppression factor) and $2times 10^{-5}$ in $Deltalambda/lambda=8%$ broadband light about $lambda=625$~nm (10x suppression factor). The fiber-based approach improves the sensitivity of spectral measurements at high contrast and may serve as an integral part of future space-based exoplanet imaging missions as well as ground-based instruments.
A fast radio burst (FRB) was recently detected to be associated with a hard X-ray burst from the Galactic magnetar SGR 1935+2154. Scenarios involving magnetars for FRBs are hence highly favored. In this work, we suggest that the impact between an ast eroid and a magnetar could explain such a detection. According to our calculations, an asteroid of mass $10^{20}$ g will be disrupted at a distance of $7 times 10^9$ cm when approaching the magnetar. The accreted material will flow along the magnetic field lines from the Alfven radius $sim 10^7$ cm. After falling onto the magnetars surface, an instant accretion column will be formed, producing a Comptonized X-ray burst and an FRB in the magnetosphere. We show that all the observational features of FRB 200428 could be interpreted self-consistently in this scenario. We predict quasi-periodic oscillations in this specific X-ray burst, which can serve as an independent observational test.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا