ترغب بنشر مسار تعليمي؟ اضغط هنا

Mode identification and seismic study of $delta$ Scuti, the prototype of a class of pulsating stars

113   0   0.0 ( 0 )
 نشر من قبل Jadwiga Daszy\\'nska-Daszkiewicz
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a seismic study of $delta$ Scuti based on a mode identification from multicoulor photometry. The dominant frequency can be associated only with a radial mode and the second frequency is, most probably, a dipole mode. The other six frequencies have more ambiguous identifications. The photometric mode identification provided also some constraints on the atmospheric metallicity [m/H]$approx$+0.5 and microturbulent velocity $xi_tapprox 4~kms$. For models reproducing the dominant frequency, we show that only the fundamental mode is possible and the first overtone is excluded. However, the location of $delta$ Scuti near the terminal age main sequence requires the consideration of three stages of stellar evolution. For the star to be on the main sequence, it is necessary to include overshooting from the convective core with a parameter of at least $alpha_{rm ov}=0.25$ at the metallicity greater than $Z=0.019$. It turned out that the value of the relative amplitude of the bolometric flux variations (the nonadiabatic parameter $f$) is mainly determined by the position of the star in the HR diagram, i.e., by its effective temperature and luminosity, whereas the effect of the evolutionary stage is minor. On the other hand, the convective efficiency in the subphotospheric layers has a dominant effect on the value of the parameter $f$. %in the $delta$ Sct star models. Comparing the theoretical and empirical values of $f$ for the radial dominant mode, we obtain constraints on the mixing length parameter $alpha_{rm MLT}$ which is less than about 1.0, independently of the adopted opacity data and chemical mixture. This value of $alpha_{rm MLT}$ is substantially smaller than for a calibrated solar model indicating rather low to moderately efficient convection in the envelope of $delta$ Scuti.



قيم البحث

اقرأ أيضاً

High-resolution spectroscopy is a powerful tool to study the dynamical structure of pulsating stars atmosphere. We aim at comparing the line asymmetry and velocity of the two delta Sct stars rho Pup and DX Cet with previous spectroscopic data obtaine d on classical Cepheids and beta Cep stars. We obtained, analysed and discuss HARPS high-resolution spectra of rho Pup and DX Cet. We derived the same physical quantities as used in previous studies, which are the first-moment radial velocities and the bi-Gaussian spectral line asymmetries. The identification of f=7.098 (1/d) as a fundamental radial mode and the very accurate Hipparcos parallax promote rho Pup as the best standard candle to test the period-luminosity relations of delta Sct stars. The action of small-amplitude nonradial modes can be seen as well-defined cycle-to-cycle variations in the radial velocity measurements of rho Pup. Using the spectral-line asymmetry method, we also found the centre-of-mass velocities of rho Pup and DX Cet, V_gamma = 47.49 +/- 0.07 km/s and V_gamma = 25.75 +/- 0.06 km/s, respectively. By comparing our results with previous HARPS observations of classical Cepheids and beta Cep stars, we confirm the linear relation between the atmospheric velocity gradient and the amplitude of the radial velocity curve, but only for amplitudes larger than 22.5 km/s. For lower values of the velocity amplitude (i.e., < 22.5 km/s), our data on rho Pup seem to indicate that the velocity gradient is null, but this result needs to be confirmed with additional data. We derived the Baade-Wesselink projection factor p = 1.36 +/- 0.02 for rho Pup and p = 1.39 +/- 0.02 for DX Cet. We successfully extended the period-projection factor relation from classical Cepheids to delta Scuti stars.
108 - C. Ulusoy , T. Gulmez , I. Stateva 2012
We report on a multi-site photometric campaign on the high-amplitude $delta$ Scuti star V2367 Cyg in order to determine the pulsation modes. We also used high-dispersion spectroscopy to estimate the stellar parameters and projected rotational velocit y. Time series multicolour photometry was obtained during a 98-d interval from five different sites. These data were used together with model atmospheres and non-adiabatic pulsation models to identify the spherical harmonic degree of the three independent frequencies of highest amplitude as well as the first two harmonics of the dominant mode. This was accomplished by matching the observed relative light amplitudes and phases in different wavebands with those computed by the models. In general, our results support the assumed mode identifications in a previous analysis of Kepler data.
As part of the NASA Kepler Guest Observer program, we requested and obtained long-cadence data on about 2700 faint (magnitude 14-16) Kepler stars with effective temperatures and surface gravities that lie near or within the pulsation instability regi on for main-sequence gamma Doradus and delta Scuti pulsating variables. These variables are of spectral type A-F with masses of 1.4 to 2.5 solar masses. The delta Scuti stars pulsate in radial and non-radial acoustic modes, with periods of a few hours (frequencies around 10 cycles/day), while gamma Doradus variables pulsate in nonradial gravity modes with periods 0.3 to 3 days (frequencies around 1 cycle/day). Here we consider the light curves and Fourier transforms of 633 stars in an unbiased sample observed by Kepler in Quarters 6-13 (June 2010-June 2012). We show the location of these stars in the log surface gravity--effective temperature diagram compared to the instability region limits established from ground-based observations, and taking into account uncertainties and biases in the Kepler Input Catalog T_eff values. While hundreds of variables have been discovered in the Kepler data, about 60% of the stars in our sample do not show any frequencies between 0.2 and 24.4 cycles per day with amplitude above 20 parts per million. We find that six of these apparently constant stars lie within the pulsation instability region. We discuss some possible reasons that these stars do not show photometric variability in the Kepler data. We also comment on the non-constant stars, and on 26 variable-star candidates, many of which also do not lie within the expected instability regions.
150 - T. D. Kinman 2014
We identify the RR Lyrae and delta Scuti (DSCT) stars in three catalogs of GALEX variable sources. The NUV amplitude of RR Lyrae stars is about twice that in V-band, so we find a larger percentage of low amplitude variables than catalogs such as Abba s et al (2014). Interestingly, the (NUV-V)_0 color is sensitive to metallicity and can be used to distinguish between variables of the same period but differing [Fe/H]. This color is also more sensitive to T_eff than optical colors and can be used to identify the red edge of the instability gap. We find 8 DSCT stars, 17 RRc stars, 1 RRd star and 84 RRab stars in the GALEX variable catalogs of Welsh et al (2005) and Wheatley et al (2008). We also classify 6 DSCT stars, 5 RRc stars and 18 RRab stars among the 55 variable GALEX sources identified as stars or RR Lyraes in the catalog of Gezari et al (2013). We provide ephemerides and light curves for the 26 variables that were not previously known.
Inspired by the so appealing example of red giants, where going from a handful of stars to thousands revealed the structure of the eigenspectrum, we inspected a large homogeneous set of around 1860 {delta} Scuti stars observed with CoRoT. This unique data set reveals a common regular pattern which appears to be in agreement with island modes featured by theoretical non-perturbative treatments of fast rotation. The comparison of these data with models and linear stability calculations suggests that spectra can be fruitfully characterized to first order by a few parameters which might play the role of seismic indices for {delta} Scuti stars, as {Delta u} and { u_{max}} do for red giants. The existence of this pattern offers an observational support for guiding further theoretical works on fast rotation. It also provides a framework for further investigation of the observational material collected by CoRoT and Kepler. Finally, it sketches out the perspective of using {delta} Scuti stars pulsations for ensemble asteroseismology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا