ﻻ يوجد ملخص باللغة العربية
We investigate the fermion condensate (FC) for a massive spinor field on background of the 5-dimensional locally anti-de Sitter (AdS) spacetime with a compact dimension and in the presence of a cosmic string carrying a magnetic flux. The FC is decomposed into two contributions. The first one corresponds to the geometry without compactification and the second one is induced by the compactification. Depending on the values of the parameters, the total FC can be either positive or negative. As a limiting case, the expression for the FC on locally Minkowski spacetime is derived. It vanishes for a massless fermion field and the nonzero FC on the AdS bulk in the massless case is an effect induced by gravitation. This shows that the gravitational field may essentially influence the parameters space for phase transitions. For a massive field the FC diverges on the string as the inverse cube of the proper distance from the string. In the case of a massless field, depending on the magnetic flux along the string and planar angle deficit, the limiting value of the FC on the string can be either finite or infinite. At large distances, the decay of the FC as a function of the distance from the string is power law for both cases of massive and massless fields. For a cosmic string on the Minkowski bulk and for a massive field the decay is exponential. The topological part in the FC vanishes on the AdS boundary. We show that the FCs coincide for the fields realizing two inequivalent irreducible representations of the Clifford algebra. In the special case of the zero planar angle deficit, the results presented in this paper describe Aharonov-Bohm-type effects induced by magnetic fluxes in curved spacetime.
We investigate the effects of a brane and magnetic-flux-carrying cosmic string on the vacuum expectation value (VEV) of the current density for a charged fermionic field in the background geometry of 4+1 dimensional anti-de Sitter (AdS) spacetime. Th
We review the results of investigations for brane-induced effects on the local properties of quantum vacuum in background of AdS spacetime. Two geometries are considered: a brane parallel to the AdS boundary and a brane intersecting the AdS boundary.
We investigate combined effects of nontrivial topology, induced by a cosmic string, and boundaries on the fermionic condensate and the vacuum expectation value (VEV) of the energy-momentum tensor for a massive fermionic field. As geometry of boundari
In this paper, we consider a massive charged fermionic quantum field and investigate the current densities induced by a magnetic flux running along the core of an idealized cosmic string in the background geometry of a 5-dimensional anti-de Sitter sp
In the present paper, we study the vacuum bosonic currents in the geometry of a compactified cosmic string in the background of the de Sitter spacetime. The currents are induced by magnetic fluxes, one running along the cosmic string and another one